General Electric GE38

Last updated
GE38 / T408
CH-53K King Stallion (39975233880).jpg
The T408 on a CH-53K King Stallion
Type Turboshaft
National origin United States
Manufacturer GE Aviation
First runDecember 26, 1989
Major applications Sikorsky CH-53K King Stallion (T408)
Developed into CFE CFE738

The General Electric GE38 is a gas turbine developed by GE Aviation for turboprop and turboshaft applications. It powers the Sikorsky CH-53K King Stallion as the T408. [1]

Contents

Design and development

The GE27 was developed in the early 1980s under the "Modern Technology Demonstrator Engines" (MTDE) program sponsored by the United States Army Aviation Applied Technology Directorate. [2] Sporting a 22:1 pressure ratio, which was a record for single-spool compressors at the time, the GE27 [3] was GE's unsuccessful submission to power the Bell Boeing V-22 Osprey tiltrotor aircraft. The GE27 also had a compressor air flow of 27–28 pounds per second (12–13 kg/s) and a turbine temperature of 2,400–2,500 °F (1,320–1,370 °C; 2,860–2,960 °R; 1,590–1,640 K). [2] The GE27 first ran in late 1984, but it unexpectedly lost the V-22 engine competition to the Allison 501-M80C, which was not a participant in the MTDE program. [4]

In the late 1980s, GE used the GE27 as the basis for the commercial development of turboshafts, turboprops, turbofans, and propfans under the GE38 name. GE formed a 50/50 venture with Garrett (then a division of AlliedSignal) to develop the turbofan variant [5] called the CFE (Commercial Fan Engines) CFE738, which used the GE27's gas generator core. [2] One of a range of advertised GE38 unducted fan (UDF) sizes, [5] the 9,620 lbf (4,360 kgf; 42.8 kN) takeoff thrust GE38-B5 was for a time the baseline engine for the West German-Chinese MPC-75 regional airliner. [6] The GE38 became the T407 military turboprop in partnership with Lycoming Engines for the Lockheed P-7A, with a maximum takeoff power of 6,000 shp (4,475 kW). First run on December 26, 1989, [7] the T407 engine was scheduled to undergo flight testing on a Lockheed P-3 Orion testbed aircraft in the summer of 1990, [8] but the US Navy canceled Lockheed's P-7 contract on July 20, 1990. [9] The commercial version of the T407 was the GLC38 (General Electric/Lycoming Commercial 38), which was unsuccessfully offered for several turboprop airliners in the late 1980s and early 1990s. [2]

The new T408 (GE38-1B) is slated to power the new Sikorsky CH-53K King Stallion three-engined helicopter for the US Marine Corps. It has a power rating of 7,500 shp. [10] The GE38 completed its first round of ground testing in May 2010. [11] Two test engines have completed over 1,000 hours of ground testing by November 2011. Five test engines will be used in the 5,000-hour test program. [12] In September 2019, GE delivered the first production T408 engine to the U.S. Naval Air Systems Command (NAVAIR) for the CH-53K. [13] GE also offered the engine to power the U.S. Navy's Ship-to-Shore Connector air-cushioned landing craft.

The T408 was also tested by the U.S. Army and Boeing as an alternative powerplant on an NCH-47D Chinook testbed helicopter. The helicopter configuration was ground tested beginning in late 2019, followed by an initial flight on September 22, 2020. [14] Conclusion of the test trials was announced on May 12, 2021. [15]

Variants

T407-GE-400
T408-GE-400 (GE38-1B)
CFE CFE738
Turbofan variant of the T407-GE-400, used on the Dassault Falcon
CPX38
Proposed turboprop engine variant of the GE38-1B [17]
GE38-3
An 8,000 shp (6,000 kW) class derivative engine under consideration by the U.S. military in 2006 [18]
GE38-B5
A contra-rotating, ungeared, unducted fan (UDF) derivative with a bare engine weight (including the UDF) of 2,395 lb (1,086 kg), a UDF diameter of 85 inches (2.1 meters), and a blade count of 11 on one propeller and 9 on the other; provides a takeoff thrust of 9,644 lbf (4,374 kgf; 42.90 kN) with a thrust-specific fuel consumption (TSFC) of 0.240 lb/(lbf⋅h) (6.8 g/(kN⋅s)), and a cruise thrust of 2,190 lbf (990 kgf; 9.7 kN) with a TSFC of 0.519 lb/(lbf⋅h) (14.7 g/(kN⋅s)); proposed for the MPC 75 German-Chinese regional airliner in the late 1980s [6]
GLC38
Proposed turboprop variant of the T407-GE-400

Applications

Specifications (T408)

Data fromGE Aviation. [19]

General characteristics

Components

Performance

See also

Related development

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Propfan</span> Type of aircraft engine

A propfan, also called an open rotor engine, open fan engine or unducted fan, is a type of aircraft engine related in concept to both the turboprop and turbofan, but distinct from both. The design is intended to offer the speed and performance of a turbofan, with the fuel economy of a turboprop. A propfan is typically designed with a large number of short, highly twisted blades, similar to the (ducted) fan in a turbofan engine. For this reason, the propfan has been variously described as an "unducted fan" (UDF) or an "ultra-high-bypass (UHB) turbofan".

<span class="mw-page-title-main">Rolls-Royce T406</span> Rolls-Royce North America turboshaft aircraft engine (1986)

The Rolls-Royce T406 is a turboshaft engine developed by Allison Engine Company that powers the Bell Boeing V-22 Osprey tiltrotor. The engine delivers 6,000 shp (4,470 kW).

<span class="mw-page-title-main">Rolls-Royce AE 2100</span> Turboprop aircraft engine family

The Rolls-Royce AE 2100 is a turboprop developed by Allison Engine Company, now part of Rolls-Royce North America. The engine was originally known as the GMA 2100, when Allison was a division of former corporate parent General Motors.

<span class="mw-page-title-main">Turboshaft</span> Gas turbine used to spin a shaft

A turboshaft engine is a form of gas turbine that is optimized to produce shaft horsepower rather than jet thrust. In concept, turboshaft engines are very similar to turbojets, with additional turbine expansion to extract heat energy from the exhaust and convert it into output shaft power. They are even more similar to turboprops, with only minor differences, and a single engine is often sold in both forms.

<span class="mw-page-title-main">General Electric J79</span> Axial flow turbojet engine

The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the Lockheed F-104 Starfighter, Convair B-58 Hustler, McDonnell Douglas F-4 Phantom II, North American A-5 Vigilante and IAI Kfir.

<span class="mw-page-title-main">Allison T56</span> American-built military turboprop (1954–)

The Allison T56 is an American single-shaft, modular design military turboprop with a 14-stage axial flow compressor driven by a four-stage turbine. It was originally developed by the Allison Engine Company for the Lockheed C-130 Hercules transport entering production in 1954. It has been a Rolls-Royce product since 1995 when Allison was acquired by Rolls-Royce. The commercial version is designated 501-D. Over 18,000 engines have been produced since 1954, logging over 200 million flying hours.

<span class="mw-page-title-main">General Electric GE36</span> US experimental propfan

The General Electric GE36 was an experimental aircraft engine, a hybrid between a turbofan and a turboprop, known as an unducted fan (UDF) or propfan. The GE36 was developed by General Electric Aircraft Engines, with its CFM International equal partner Snecma taking a 35 percent share of development. Development was cancelled in 1989.

<span class="mw-page-title-main">Sikorsky CH-53K King Stallion</span> Heavy transport helicopter

The Sikorsky CH-53K King Stallion is a heavy transport helicopter designed and produced by Sikorsky Aircraft. The King Stallion is an evolution of the long running CH-53 series of helicopters which has been in continuous service since 1966, and features three up-rated 7,500 shp (5,590 kW) engines, new composite rotor blades, and a wider aircraft cabin than its predecessors. It is the largest and heaviest helicopter in the U.S. military.

<span class="mw-page-title-main">General Electric T700</span> Family of turboshaft and turboprop engines

The General Electric T700 and CT7 are a family of turboshaft and turboprop engines in the 1,500–3,000 shp (1,100–2,200 kW) class.

<span class="mw-page-title-main">General Electric T58</span> American turboshaft engine for helicopters

The General Electric T58 is an American turboshaft engine developed for helicopter use. First run in 1955, it remained in production until 1984, by which time some 6,300 units had been built. On July 1, 1959, it became the first turbine engine to gain FAA certification for civil helicopter use. The engine was license-built and further developed by de Havilland in the UK as the Gnome, in the West Germany by Klöckner-Humboldt-Deutz, and also manufactured by Alfa Romeo and the IHI Corporation.

The Pratt & Whitney JT12, is a small turbojet engine. The Pratt & Whitney T73 is a related turboshaft engine.

<span class="mw-page-title-main">General Electric T64</span> Turboshaft engine

The General Electric T64 is a free-turbine turboshaft engine that was originally developed for use on helicopters, but which was later used on fixed-wing aircraft as well. General Electric introduced the engine in 1964. The original engine design included technical innovations such as corrosion resistant and high-temperature coatings. The engine features a high overall pressure ratio, yielding a low specific fuel consumption for its time. Although the compressor is all-axial, like the earlier General Electric T58, the power turbine shaft is coaxial with the HP shaft and delivers power to the front of the engine, not rearwards. Fourteen compressor stages are required to deliver the required overall pressure ratio. Compressor handling is facilitated by 4 rows of variable stators. Unlike the T58, the power turbine has 2 stages.

<span class="mw-page-title-main">Honeywell T55</span> Family of turboprop aircraft engines

The Honeywell T55 is a turboshaft engine used on American helicopters and fixed-wing aircraft since the 1950s, and in unlimited hydroplanes since the 1980s. As of 2021, more than 6,000 of these engines have been built. It is produced by Honeywell Aerospace, a division of Honeywell based in Scottsdale, Arizona, and was originally designed by the Turbine Engine Division of Lycoming Engines in Stratford, Connecticut, as a scaled-up version of the smaller Lycoming T53. The T55 serves as the engine on several major applications including the CH-47-Chinook, the Bell 309, and the Piper PA-48 Enforcer. The T55 also serves as the core of the Lycoming ALF 502 turbofan. Since the T55 was first developed, progressive increases in airflow, overall pressure ratio, and turbine inlet temperature have more than tripled the power output of the engine.

<span class="mw-page-title-main">General Electric T31</span>

The General Electric T31 was the first turboprop engine designed and built in the United States.

<span class="mw-page-title-main">Continental T51</span>

The Continental CAE T51 was a small turboshaft engine produced by Continental Aviation and Engineering (CAE) under license from Turbomeca. A development of the Artouste, it was followed by three additional turboshaft engines, the T72, the T65, and the T67. However, none of these engines, including the T51, entered full production. CAE abandoned turboshaft development in 1967 after the XT67 lost to the Pratt & Whitney Canada PT6T (T400) to power the Bell UH-1N Twin Huey.

<span class="mw-page-title-main">Solar T62</span> Type of aircraft

The Solar T62 Titan is an American gas turbine engine used mainly as a aircraft auxiliary power unit (APU), conventional power generator, turboprop engine for fixed-wing aircraft or turboshaft engine for helicopters. A new turbine version was developed as the Solar T66.

Ed Woll (1914-2010) was an American engineer who developed the first modern gas turbine engines for General Electric.

<span class="mw-page-title-main">Free-turbine turboshaft</span>

A free-turbine turboshaft is a form of turboshaft or turboprop gas turbine engine where the power is extracted from the exhaust stream of a gas turbine by an independent turbine, downstream of the gas turbine. The power turbine is not mechanically connected to the turbines that drive the compressors, hence the term "free", referring to the independence of the power output shaft. This is opposed to the power being extracted from the turbine/compressor shaft via a gearbox.

<span class="mw-page-title-main">Future Affordable Turbine Engine</span>

The Future Affordable Turbine Engine (FATE) is a US Army program for a 5,000-10,000-shp class turboshaft/turboprop for Future Vertical Lift aircraft and its Joint Multi Role precursor.

<span class="mw-page-title-main">Allison T56 variants</span> Range of American turboprop aircraft engines

The Allison T56 turboprop engine has been developed extensively throughout its production run, the many variants are described by the manufacturer as belonging to four main series groups.

References

  1. Sikorsky Unveils CH-53K Helicopter; U.S. Marine Corps Reveals Aircraft Name
  2. 1 2 3 4 Leyes II, Richard A.; Fleming, William A. (1999). The History of North American Small Gas Turbine Aircraft Engines. Washington, DC: Smithsonian Institution. pp.  365372. ISBN   1-56347-332-1.
  3. Zoccoli, Michael J.; Rusterholz, Kenneth P. (June 1–4, 1992). "An update on the development of the T407/GLC38 modern technology gas turbine engine" (PDF). Volume 2: Aircraft Engine; Marine; Microturbines and Small Turbomachinery. International Gas Turbine and Aeroengine Congress and Exposition. Cologne, Germany: American Society of Mechanical Engineers (ASME). doi: 10.1115/92-GT-147 . ISBN   978-0-7918-7894-1. OCLC   8518815331.
  4. "Navy surprise on V-22 power" (PDF). Propulsion. Flight International. Vol. 129, no. 3995. Detroit, Michigan, USA. January 25, 1986. p. 16. ISSN   0015-3710. Archived from the original (PDF) on April 19, 2014.
  5. 1 2 "Manufacturers positioning for coming competitive battles". Air Transport World. Vol. 23. September 1986. pp. 20+. ISSN   0002-2543. Gale   A4426985.
  6. 1 2 MBB CATIC Association (July 1987). MPC 75 feasibility study - Summary report: B1 - Project definition (PDF) (Report). pp.  B1–2, B1–13, B1–23, B1–25, B1–30 to B1–32, B1–37, B1–45 to B1–46, Appendix B1-4.1 pages 20 to 31.
  7. Zoccoli, Michael J.; Klassen, David D. (June 11–14, 1990). "T407/GLC38: A Modern Technology Powerplant". T407/GLC38: 'A modern technology powerplant' (PDF). Gas Turbine and Aeroengine Congress and Exposition. Brussels, Belgium: American Society of Mechanical Engineers (ASME). doi: 10.1115/90-GT-242 . ISBN   978-0-7918-7905-4. OCLC   7344745132.
  8. Munson, Kenneth; Jackson, Paul; Gunston, Bill (July 1990). "Gallery of US Navy, Marine Corps, and Army aircraft". Air Force Magazine . Vol. 73, no. 7. p. 90. hdl:2027/osu.32435027300748. ISSN   0730-6784.
  9. Vartabedian, Ralph (July 21, 1990). "Navy cancels $600-million Lockheed plane contract". Los Angeles Times . ISSN   0458-3035. Archived from the original on October 29, 2020.
  10. "GE Launches New Engine Program for U.S. Marine Corps Heavy-lift Helicopter". GE Aviation, January 24, 2007.
  11. "GE38 Completes First Engine to Test Program". GE Aviation, May 6, 2010.
  12. "GE38 Looking to Take to the Sea". GE Aviation, January 18, 2011.
  13. Grillo, Thomas (October 25, 2019). "GE sends first T408 to Navy". Lynn Daily Item . ISSN   1532-5709.
  14. Trevithick, Joseph (September 23, 2020). "CH-47 Chinook with far more powerful T408 engines has flown for the first time". The Drive.
  15. Jennings, Gareth (May 13, 2021). "US Army concludes trial of Chinook fitted with King Stallion engines" . Jane's.
  16. Reim, Garrett (14 July 2020). "CH-47 Chinook flight tests with more powerful GE T408 engine could begin within weeks" . FlightGlobal . Retrieved 5 August 2020.
  17. O'Connor, Bill (October 5, 2010). "Turboprop version of GE38 turboshaft due mid-decade". AINonline .
  18. National Research Council (NRC) (2006). "Derivative engine programs". A review of United States Air Force and Department of Defense aerospace propulsion needs (Report). p. 95. doi:10.17226/11780. ISBN   978-0-309-10247-6. OCLC   1050643189.
  19. Model GE38 Archived 2009-02-08 at the Wayback Machine . GE Aviation. Retrieved: 19 October 2010.
  20. deBock, Peter (September 18, 2019). GE turbines and small engines overview (PDF). 2019 INTEGRATE Annual Meeting. General Electric Global Research. ARPA-E . Retrieved September 23, 2021.

Bibliography