J46 | |
---|---|
| |
J46-WE-8 cutaway | |
Type | Afterburning Turbojet |
National origin | United States |
Manufacturer | Westinghouse Aviation Gas Turbine Division |
Major applications | Convair F2Y Sea Dart Vought F7U Cutlass |
Developed from | Westinghouse J34 |
The Westinghouse J46 is an afterburning turbojet engine developed by the Westinghouse Aviation Gas Turbine Division for the United States Navy in the 1950s. It was primarily employed in powering the Convair F2Y Sea Dart and Vought F7U Cutlass. The engine also powered the land speed-record car known as the Wingfoot Express, designed by Walt Arfons and Tom Green [1] [2] It was intended to power the F3D-3, an improved, swept-wing variant of the Douglas F3D Skyknight, although this airframe was never built. [3]
The J46 engine was developed as a larger, more powerful version of Westinghouse's J34 engine, about 50% larger. The Westinghouse model number was a continuation of the "X24C" series of the J34. The model number assigned was X24C10, even though the J46 differed in many design features from the smaller J34. It was seen as a lower development risk than the Westinghouse J40 which was in parallel development at the same time.
The development program ran into many problems with this engine, including the original electronic control system, compressor/turbine mismatches, combustion instability and control issues at altitude leading to compressor stalling The produced -8, -8A and -8B engines were all derated from the original design specification on both thrust and specific fuel consumption. [4]
The engine's 12-stage compressor was driven by two turbine stages on a single shaft. Early development engines included a simple "eyelid" afterburner, actuated by control rods that ran the length of the engine. By the time the engine reached production, the rear nozzle had an iris-type "petal" design. The same long control rods now pushed or pulled a ring that ran on rollers, which in turn opened or closed the iris. The original design, using an electronic control system, would have allowed continuous adjustment of afterburner thrust from minimum to maximum. This was abandoned when the electronic control could not be made acceptably reliable; the final afterburner was an "ON/OFF" unit.
Related development
Related lists