Model 250 / T63 | |
---|---|
MTU-built Allison 250-C20B | |
Type | Turboshaft/Turboprop |
National origin | United States |
Manufacturer | Allison Engine Company Rolls-Royce plc |
Major applications | Bell 206 Britten-Norman BN-2T Turbine Islander MD Helicopters MD 500 MBB Bo 105 Sikorsky S-76 |
Number built | >30,000 |
Variants | Rolls-Royce RR300 |
Developed into | Rolls-Royce RR500 |
The Allison Model 250, now known as the Rolls-Royce M250, (US military designations T63 and T703) is a highly successful turboshaft engine family, originally developed by the Allison Engine Company in the early 1960s. The Model 250 has been produced by Rolls-Royce since it acquired Allison in 1995.
In 1958, the Detroit Diesel Allison division of General Motors was chosen by the US Army to develop a new light turbine engine to power a "Light Observation Aircraft" (LOA), to replace the Cessna O-1A Bird Dog. At this stage the US Army was unsure whether to have a fixed- or rotary-wing aircraft, so Allison was instructed to consider both applications. Design studies undertaken considered a wide range of possible mechanical configurations for the turboprop/turboshaft. These studies culminated in the testing of the first prototype engine, designated YT63-A-3, in April 1959. [1] In 1960, the US Army settled for a rotary wing platform. The YT63-A-3 first flew in a variant of the Bell 47 helicopter in 1961. A modified version of the engine (YT63-A-5) with the exhaust pointing upwards (to avoid grass fires) soon followed. This version, rated at 250 hp, passed the Model Qualification Test in September 1962. The Hughes OH-6 design, powered by the T63, was selected for the US Army LOH in May 1965.
The Model 250 powers a large number of helicopters, small aircraft and even a motorcycle (MTT Turbine Superbike). [2] As a result, nearly 30,000 Model 250 engines have been produced, of which approximately 16,000 remain in service, making the Model 250 one of the highest-selling engines made by Rolls-Royce.
Allison adopted a reverse-airflow engine configuration for the Model 250: although air enters the intake/compression system in the conventional fashion, the compressed air leaving the centrifugal compressor diffuser is ported rearwards via two transfer pipes, which go around the outside of the turbine system, before the air is turned through 180 degrees at entry to the combustor. The combustion products expand axially forward through the two-stage (single-stage on early engines) high-pressure turbine section, which is connected to the compressor via the HP shaft. The combustion products continue to expand through the two-stage power turbine which generates shaft horsepower for the aircraft. A coaxial stub shaft connects the power turbine to a compact reduction gearbox, located inboard, between the centrifugal compressor and the exhaust/power turbine system. The exhaust stream then turns through 90 degrees to exit the engine in a radial direction through twin exhaust ducts, which form a V-shape seen in the front elevation.
An important design feature of the Model 250 engine is its modular construction which greatly simplifies maintenance and repair activity. Also the unique reverse-flow design provides for ease of hot section maintenance. There are four modules:
Earlier versions have seven axial compressor stages mounted on the HP shaft to supercharge a relatively low-pressure-ratio centrifugal compressor. The -C20B is typical, with an overall pressure ratio of 7.2:1, at an airflow of 3.45 lb/s (1.8 kg/s), with a power output, at the shaft, of 420 hp (310 kW).
One of the latest versions of the Model 250 is the -C40, which has only a centrifugal compressor producing a pressure ratio of 9.2:1, at an airflow of 6.1 lb/s (2.8 kg/s), and develops, at the shaft, 715 hp (533 kW).
Data fromThe Instrumentation Design And Control of a T63-A-700 Gas Turbine Engine [7]
Related development
The Rolls-Royce Turbomeca RTM322 is a turboshaft engine currently produced by Safran Helicopter Engines. The RTM322 was originally conceived and manufactured by Rolls-Royce Turbomeca Limited, a joint venture between Rolls-Royce and Turbomeca. The engine was designed to suit a wide range of military and commercial helicopter designs. The RTM322 can also be employed in maritime and industrial applications.
The Rolls-Royce T406 is a turboshaft engine developed by Allison Engine Company that powers the Bell Boeing V-22 Osprey tiltrotor. The engine delivers 6,000 shp (4,470 kW).
The Pratt & Whitney Canada PW100 aircraft engine family is a series of 1,800 to 5,000 shaft horsepower turboprops manufactured by Pratt & Whitney Canada. Pratt & Whitney Canada dominates the turboprop market with 89% of the turboprop regional airliner installed base in 2016, leading GE Aviation and Allison Engine Company.
The Rolls-Royce RB.39 Clyde was Rolls-Royce's first purpose-designed turboprop engine and the first turboprop engine to pass its civil and military type-tests.
The Allison T56 is an American single-shaft, modular design military turboprop with a 14-stage axial flow compressor driven by a four-stage turbine. It was originally developed by the Allison Engine Company for the Lockheed C-130 Hercules transport entering production in 1954. It has been a Rolls-Royce product since 1995 when Allison was acquired by Rolls-Royce. The commercial version is designated 501-D. Over 18,000 engines have been produced since 1954, logging over 200 million flying hours.
The Rolls-Royce Gnome is a British turboshaft engine originally developed by the de Havilland Engine Company as a licence-built General Electric T58, an American mid-1950s design. The Gnome came to Rolls-Royce after their takeover of Bristol Siddeley in 1966, Bristol having absorbed de Havilland Engines Limited in 1961.
The Rolls-Royce Gem is a turboshaft engine developed specifically for the Westland Lynx helicopter in the 1970s. The design started off at de Havilland Engine division and passed to Bristol Siddeley as the BS.360. Rolls-Royce bought out Bristol Siddeley in 1966 and after it dropped the Bristol Siddeley identity the engine became the RS.360.
The General Electric T700 and CT7 are a family of turboshaft and turboprop engines in the 1,500–3,000 shp (1,100–2,200 kW) class.
The LycomingLTS101 is a turboshaft engine family ranging from 650 to 850 shaft horsepower, used in a number of popular helicopters, and, as the LTP101 turboprop, light aircraft. Both models carry the US military designation T702. The engine was originally designed at the Lycoming Turbine Engine Division in Stratford, Connecticut, but is now produced by Honeywell Aerospace.
The Rolls-Royce RR300 is a turbine aircraft engine (turboshaft/turboprop) developed for the light helicopter/general aviation market. Rated at up to 300 shp (224 kW) at take-off power, the RR300 is a rebadged and downrated variant of the Rolls-Royce Model 250-C20.
The Turbomeca Astazou is a highly successful series of turboprop and turboshaft engines, first run in 1957. The original version weighed 110 kg (243 lb) and developed 240 kW (320 shp) at 40,000 rpm. It was admitted for aviation service on May 29, 1961, after a 150-hour test run. The main developing engineer was G. Sporer. It was named after two summits of the Pyrenees.
The Turbomeca Turmo is a family of French turboshaft engines manufactured for helicopter use. Developed from the earlier Turbomeca Artouste, later versions delivered up to 1,300 kW (1,700 shp). A turboprop version was developed for use with the Bréguet 941 transport aircraft.
The General Electric T58 is an American turboshaft engine developed for helicopter use. First run in 1955, it remained in production until 1984, by which time some 6,300 units had been built. On July 1, 1959, it became the first turbine engine to gain FAA certification for civil helicopter use. The engine was license-built and further developed by de Havilland in the UK as the Gnome, in the West Germany by Klöckner-Humboldt-Deutz, and also manufactured by Alfa Romeo and the IHI Corporation.
The Napier Eland is a British turboshaft or turboprop gas-turbine engine built by Napier & Son in the early 1950s. Production of the Eland ceased in 1961 when the Napier company was taken over by Rolls-Royce.
The General Electric T64 is a free-turbine turboshaft engine that was originally developed for use on helicopters, but which was later used on fixed-wing aircraft as well. General Electric introduced the engine in 1964. The original engine design included technical innovations such as corrosion resistant and high-temperature coatings. The engine features a high overall pressure ratio, yielding a low specific fuel consumption for its time. Although the compressor is all-axial, like the earlier General Electric T58, the power turbine shaft is coaxial with the HP shaft and delivers power to the front of the engine, not rearwards. Fourteen compressor stages are required to deliver the required overall pressure ratio. Compressor handling is facilitated by 4 rows of variable stators. Unlike the T58, the power turbine has 2 stages.
The Rolls-Royce RR500 is a family of small gas turbine engines developed by Rolls-Royce Corporation. The RR500TP turboprop variant was intended for use in small aircraft. The RR500TS was the turboshaft variant designed for light helicopters. Development of the RR500 was abandoned in 2012.
The General Electric T31 was the first turboprop engine designed and built in the United States.
The Boeing T50 was a small turboshaft engine produced by Boeing. It was the first turboshaft engine to ever power a helicopter: a modified Kaman K-225 in 1951. Based on Boeing's earlier Model 500 gas generator, the T50's main application was in the QH-50 DASH helicopter drone of the 1950s. An up-rated version designated Model 550 was developed to power the QH-50D and was given the military designation T50-BO-12.
The Turbomeca Palouste is a French gas turbine engine, first run in 1952. Designed purely as a compressed air generator, the Palouste was mainly used as a ground-based aircraft engine starter unit. Other uses included rotor tip propulsion for helicopters.
The Klimov TV2-117 is a Soviet gas-turbine turboshaft engine intended for helicopter use. Designed in the early 1960s by the Isotov Design Bureau the engine became the first purpose built gas turbine engine for helicopter use by the Soviet Union with previous helicopter turbines being adapted aeroplane powerplants. It was later produced by Klimov, production ending in 1997.
{{cite web}}
: CS1 maint: archived copy as title (link)