Overall pressure ratio

Last updated

In aeronautical engineering, overall pressure ratio, or overall compression ratio, is the ratio of the stagnation pressure as measured at the front and rear of the compressor of a gas turbine engine. The terms compression ratio and pressure ratio are used interchangeably. [1] Overall compression ratio also means the overall cycle pressure ratio which includes intake ram. [2]

Contents

History of overall pressure ratios

Early jet engines had limited pressure ratios due to construction inaccuracies of the compressors and various material limits. For instance, the Junkers Jumo 004 from World War II had an overall pressure ratio 3.14:1. The immediate post-war Snecma Atar improved this marginally to 5.2:1. Improvements in materials, compressor blades, and especially the introduction of multi-spool engines with several different rotational speeds, led to the much higher pressure ratios common today.

Modern civilian engines generally operate between 40 and 55:1. The highest in-service is the General Electric GEnx-1B/75 with an OPR of 58 at the end of the climb to cruise altitude (Top of Climb) and 47 for takeoff at sea level. [3]

Advantages of high overall pressure ratios

Generally speaking, a higher overall pressure ratio implies higher efficiency, but the engine will usually weigh more, so there is a compromise. A high overall pressure ratio permits a larger area ratio nozzle to be fitted on the jet engine. This means that more of the heat energy is converted to jet speed, and energetic efficiency improves. This is reflected in improvements in the engine's specific fuel consumption.

The GE Catalyst has a 16:1 OPR and its thermal efficiency is 40%, the 32:1 Pratt & Whitney GTF has a thermal efficiency of 50% and the 58:1 GEnx has a thermal efficiency of 58%. [4]

Disadvantages of high overall pressure ratios

One of the primary limiting factors on pressure ratio in modern designs is that the air heats up as it is compressed. As the air travels through the compressor stages it can reach temperatures that pose a material failure risk for the compressor blades. This is especially true for the last compressor stage, and the outlet temperature from this stage is a common figure of merit for engine designs.

Military engines are often forced to work under conditions that maximize the heating load. For instance, the General Dynamics F-111 Aardvark was required to operate at speeds of Mach 1.1 at sea level. As a side-effect of these wide operating conditions, and generally older technology in most cases, military engines typically have lower overall pressure ratios. The Pratt & Whitney TF30 used on the F-111 had a pressure ratio of about 20:1, while newer engines like the General Electric F110 and Pratt & Whitney F135 have improved this to about 30:1.

An additional concern is weight. A higher compression ratio implies a heavier engine, which in turn costs fuel to carry around. Thus, for a particular construction technology and set of flight plans an optimal overall pressure ratio can be determined.

Examples

EngineOverall pressure ratioMajor applications
General Electric GE9X 60:1 777X
Rolls-Royce Trent XWB 52:1 A350 XWB
General Electric GE90 42:1 777
General Electric CF6 30.5:1 747, 767, A300, MD-11, C-5
General Electric F110 30:1 F-14, F-15, F-16
Pratt & Whitney TF30 20:1 F-14, F-111
Rolls-Royce/Snecma Olympus 593 15.5:1/80:1 Supersonic. [5] Concorde

Differences from other similar terms

The term should not be confused with the more familiar term compression ratio applied to reciprocating engines. Compression ratio is a ratio of volumes. In the case of the Otto cycle reciprocating engine, the maximum expansion of the charge is limited by the mechanical movement of the pistons (or rotor), and so the compression can be measured by simply comparing the volume of the cylinder with the piston at the top and bottom of its motion. The same is not true of the "open ended" gas turbine, where operational and structural considerations are the limiting factors. Nevertheless, the two terms are similar in that they both offer a quick way of determining overall efficiency relative to other engines of the same class.

The broadly equivalent measure of rocket engine efficiency is chamber pressure/exit pressure, and this ratio can be over 2000 for the Space Shuttle Main Engine.

See also

Related Research Articles

Jet engine Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine discharging a fast-moving jet that generates thrust by jet propulsion. While this broad definition can include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an airbreathing jet engine such as a turbojet, turbofan, ramjet, or pulse jet. In general, jet engines are internal combustion engines.

Gas turbine Type of internal combustion engine

A gas turbine, also called a combustion turbine, is a type of continuous and internal combustion engine. The main elements common to all gas turbine engines are:

Turbofan Airbreathing jet engine designed to provide thrust by driving a fan

The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the turbo portion refers to a gas turbine engine which achieves mechanical energy from combustion, and the fan, a ducted fan that uses the mechanical energy from the gas turbine to accelerate air rearwards. Thus, whereas all the air taken in by a turbojet passes through the turbine, in a turbofan some of that air bypasses the turbine. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

Aircraft engine Engine designed for use in powered aircraft

An aircraft engine, often referred to as an aero engine, is the power component of an aircraft propulsion system. Most aircraft engines are either piston engines or gas turbines, although in recent years many small UAVs have used electric motors.

Napier Nomad

The Napier Nomad was a British diesel aircraft engine designed and built by Napier & Son in 1949. They combined a piston engine with a turbine to recover energy from the exhaust and thereby improve fuel economy. Two versions were tested, the complex Nomad I which used two propellers, each driven by the mechanically independent stages, and the Nomad II, using the turbo-compound principle, coupled the two parts to drive a single propeller. The Nomad II had the lowest specific fuel consumption figures seen up to that time. Despite this the Nomad project was cancelled in 1955 having spent £5.1 million on development, as most interest had passed to turboprop designs.

Turbojet Airbreathing jet engine, typically used in aircraft

The turbojet is an airbreathing jet engine, typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

Brayton cycle Thermodynamic cycle

The Brayton cycle is a thermodynamic cycle named after George Brayton that describes the workings of a constant-pressure heat engine. The original Brayton engines used a piston compressor and piston expander, but more modern gas turbine engines and airbreathing jet engines also follow the Brayton cycle. Although the cycle is usually run as an open system, it is conventionally assumed for the purposes of thermodynamic analysis that the exhaust gases are reused in the intake, enabling analysis as a closed system.

Afterburner Adds additional thrust to an engine at the cost of increased fuel consumption

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. Afterburning injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of very high fuel consumption which limits its use to short periods. This aircraft application of reheat contrasts with the meaning and implementation of reheat applicable to gas turbines driving electrical generators and which reduces fuel consumption.

Bypass ratio

The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

Compressor Mechanical device that increases the pressure of a gas by reducing its volume

A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.

Forced induction is the process of delivering compressed air to the intake of an internal combustion engine. A forced induction engine uses a gas compressor to increase the pressure, temperature and density of the air. An engine without forced induction is considered a naturally aspirated engine.

General Electric CF6 Turbofan aircraft engine family

The General Electric CF6, US military designation F103, is a family of high-bypass turbofan engines produced by GE Aviation. Based on the TF39, the first high-power high-bypass jet engine, the CF6 powers a wide variety of civilian airliners. The basic engine core also powers the LM2500, LM5000, and LM6000 marine and power generation turboshafts. It is gradually being replaced by the newer GEnx family.

In internal combustion engines, water injection, also known as anti-detonant injection (ADI), can spray water into the incoming air or fuel-air mixture, or directly into the cylinder to cool certain parts of the induction system where "hot points" could produce premature ignition. In jet engines it increases engine thrust at low speeds and at takeoff.

Thermal efficiency

In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, a steam turbine or a steam engine, a boiler, furnace, or a refrigerator for example. For a heat engine, thermal efficiency is the fraction of the energy added by heat that is converted to net work output. In the case of a refrigeration or heat pump cycle, thermal efficiency is the ratio of net heat output for heating, or removal for cooling, to energy input.

Engine efficiency of thermal engines is the relationship between the total energy contained in the fuel, and the amount of energy used to perform useful work. There are two classifications of thermal engines-

  1. Internal combustion and
  2. External combustion engines.
Pratt & Whitney PW1000G

The Pratt & Whitney PW1000G is a high-bypass geared turbofan engine family, currently selected as the exclusive engine for the Airbus A220, Mitsubishi SpaceJet, and Embraer's second generation E-Jets, and as an option on the Irkut MC-21 and Airbus A320neo. The project was previously known as the Geared Turbofan (GTF), and originally the Advanced Technology Fan Integrator (ATFI). The engine is expected to deliver reductions in fuel use and ground noise when used in next-generation aircraft. The PW1000G engine first entered commercial use in January 2016 with Lufthansa's first commercial Airbus A320neo flight.

An airbreathing jet engine is a jet engine that emits a jet of hot exhaust gases formed from air that is forced into the engine by several stages of centrifugal, axial or ram compression, which is then heated and expanded through a nozzle. They are typically gas turbine engines. The majority of the mass flow through an airbreathing jet engine is provided by air taken from outside of the engine and heated internally, using energy stored in the form of fuel.

Internal combustion engines come in a wide variety of types, but have certain family resemblances, and thus share many common types of components.

Internal combustion engine Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine (ICE) is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful work. This replaced the external combustion engine for applications where weight or size of the engine is important.

General Electric Affinity

The General Electric Affinity is a turbofan developed by GE Aviation for supersonic transports. Launched in May 2017 to power the Aerion AS2 supersonic business jet, its initial design was completed in 2018 before its detailed design in 2020 for the first prototype production. Its high-pressure core is derived from the CFM56, matched to a new twin fan low-pressure section for a reduced bypass ratio better suited to supersonic flight.

References

  1. "The aircraft Gas Turbine Engine and its operation" P&W Oper.Instr.200, United Technologies Pratt & whitney December, 1982, p.49
  2. http://www.ulb.tu-darmstadt.de/tocs/210525592.pdf p.695
  3. Bjorn Fehrm (October 28, 2016). "Bjorn's Corner: Turbofan engine challenges, Part 1". Leeham News.
  4. Bjorn Fehrm (June 14, 2019). "Bjorn's Corner: Why hybrid cars work and hybrid airliners have challenges". Leeham News.
  5. Concorde: story of a supersonic pioneer By Kenneth Owen