General Electric F110

Last updated
F110
F110-GE Turbofan Engine.jpg
A F110-GE-100 turbofan engine to be used in an F-16, ca.1986
Type Turbofan
National origin United States
Manufacturer GE Aerospace
First run1980s
Major applications Boeing F-15EX Eagle II
General Dynamics F-16 Fighting Falcon
Grumman F-14 Tomcat
McDonnell Douglas F-15E Strike Eagle
Mitsubishi F-2
TAI TF Kaan
Developed from General Electric F101
Variants General Electric F118

The General Electric F110 is an afterburning turbofan jet engine produced by GE Aerospace (formerly GE Aviation). It was derived from the General Electric F101 as an alternative engine to the Pratt & Whitney F100 for powering tactical fighter aircraft, with the F-16C Fighting Falcon and F-14A+/B Tomcat being the initial platforms; the F110 would eventually power new F-15 Eagle variants as well. The engine is also built by IHI Corporation in Japan, TUSAŞ Engine Industries (TEI) in Turkey, and Samsung Techwin in South Korea as part of licensing agreements. [1] [2]

Contents

The F118 is a non-afterburning variant of the F110 that powers the Northrop B-2 stealth bomber and Lockheed U-2S reconnaissance aircraft.

Design and development

The F110 emerged from an intersection of efforts in the 1970s by General Electric to reenter the U.S. fighter engine market and the U.S. Air Force's desire to address the reliability, longevity, and maintenance issues with the Pratt & Whitney F100 engines that powered its F-15s and F-16s. In 1975, General Electric used its own funds to begin developing the F101X, a derivative of its F101 engine for the B-1 bomber; the F101X would inherit much of the core design while having a smaller fan that was upscaled from the F404 so that its thermodynamic cycle and thrust were better suited for a fighter engine. The convergent-divergent iris nozzle was also derived from the F404.

The cancellation of the B-1A by the Carter Administration (in lieu of the Advanced Technology Bomber which became the B-2) meant a loss of business for General Electric, and provided further impetus to provide the F101X for the fighter engine market. The engine attracted the interest of the Air Force's Engine Model Derivative Program (EMDP), and in 1979 began funding it as the F101 Derivative Fighter Engine, or F101 DFE. The Air Force saw the F101 DFE as a potential alternative to the F100 and also a way to coerce better performance from Pratt & Whitney in addressing issues with the F100. [3]

An F110 engine undergoes performance testing at the Air Force's Arnold Engineering Development Center. General Electric F110 AEDC 84-1128 USAF.jpg
An F110 engine undergoes performance testing at the Air Force's Arnold Engineering Development Center.

Following the completion of ground tests in 1980, the F101 DFE was first fitted on an F-16 for flight testing, where it showed considerable improvement in performance and operability over the existing F100. In 1982, the Air Force began the full-scale development of the F101 DFE as an option to compete with the F100 for application in future F-15 and F-16 production; the engine was eventually selected for the F-16 and designated the F110-GE-100. The threat by the F110 has been cited as a reason for Pratt & Whitney to more quickly rectify the issues affecting the F100 and developing the improved F100-PW-220 variant. [3] [4] Seeking to drive unit costs down and improve contractor performance, the Air Force implemented the Alternate Fighter Engine (AFE) competition between the F100 and F110 in 1983 in what was nicknamed "The Great Engine War", where the engine contract would be awarded through competition. The Air Force would buy both engines starting in 1984, with contracts being competed every fiscal year and the percentages of F100 versus F110 would vary based on contract; the competitions eventually ended in 1992. [5]

The F-14B prototype, BuNo 157986, testing the F101 DFE, which the Navy would eventually adopt as the F110-GE-400 F-14B Tomcat prototype in flight c1973.jpg
The F-14B prototype, BuNo 157986, testing the F101 DFE, which the Navy would eventually adopt as the F110-GE-400

The F101 DFE was also tested in the F-14B prototype in 1981, and the aircraft saw considerable performance improvement over the existing Pratt & Whitney TF30. [6] Although further testing was halted by the Navy in 1982, it would use the results of the Air Force's AFE evaluation to choose the powerplant for future F-14s. The F101 DFE was eventually chosen by the Navy in 1984 and was designated the F110-GE-400. [3]

Design

Video of F110 testing

The F110-GE-100/400 is a low-bypass axial-flow afterburning turbofan. It has a 3-stage fan driven by a two-stage low-pressure turbine and a 9-stage compressor driven by a one-stage high-pressure turbine; overall pressure ratio is 30.4 and bypass ratio is 0.87. [7] In contrast to the ambitious raw performance goals for the F100 of high thrust and low weight, the F110 placed a greater emphasis on balancing between reliability, operability, and performance. The fan and inlet guide vanes were designed to smooth airflow to increase resistance to compressor stalls. The engine has an electronic and hydromechanical control system that was forgiving of rapid throttle inputs. The main difference between the -100 and the -400 is the latter's augmentor, or afterburner section, being about 50 inches longer. The -100, used on the F-16C/D Block 30/40, had an uninstalled static thrust of 16,600 lbf (73.8 kN) in intermediate power and 28,200 lbf (125.4 kN) in afterburner; the figures for the -400, used on the F-14B/D, were 16,333 lbf (72.7 kN) and 26,950 lbf (119.9 kN) respectively. [8]

Further developments

In the mid-1980s, the Air Force sought greater power for its tactical fighters and began Improved Performance Engine (IPE) programs for the F100 and F110, with the goal of achieving thrust in the 29,000 lbf (129 kN) class, while retaining the durability achieved in the F100-PW-220 and F110-GE-100. The result would be the Pratt & Whitney F100-PW-229 and General Electric F110-GE-129. Compared to the -100, the -129 incorporated component improvements, including a full authority digital engine control (FADEC), that allowed maximum thrust to be achieved in a wider range of conditions and across larger portions of the flight envelope, while retaining 80% commonality; bypass ratio was reduced to 0.76. The -129 produces 17,155 lbf (76.3 kN) of thrust in intermediate power and 29,500 lbf (131.2 kN) in full afterburner, and was first fielded in 1992 on the F-16C/D Block 50; the engine would also power enhanced F-15E variants, starting with the F-15K for South Korea.

A non-afterburning variant of the F110, designated the F118, would power the B-2 stealth bomber and the re-engined U-2S reconnaissance aircraft. A variant of the F110-GE-100 fitted with a 3-dimensional axisymmetric thrust vectoring nozzle, referred by General Electric as the Axisymmetric Vectoring Exhaust Nozzle (AVEN), was tested on a specially modified F-16 called the NF-16D VISTA under the Multi-Axis Thrust-Vectoring (MATV) program. [9]

The F110 would see the development of a further enhanced variant starting in 2000 with the F110-GE-132, initially referred to as the F110-GE-129EFE (Enhanced Fighter Engine). [10] Both the -132 and its competitor, the Pratt & Whitney F100-PW-232, were designed to make full use of the F-16's Modular Common Inlet Duct (MCID), or "Big Mouth" inlet introduced in the Block 30 variant. The -132 incorporates an improved fan that is more efficient and can increase maximum airflow, composite fan duct, durability improvements to the hot section, radial augmentor (or afterburner), and control system improvements. The engine leveraged research performed under the Integrated High Performance Turbine Engine Technology (IHPTET) program. The -132 produces 19,000 lbf (84.5 kN) of thrust in intermediate power and 32,500 lbf (144.6 kN) in afterburner but can also be tuned to run at -129 thrust levels to increase inspection intervals from 4,300 cycles to 6,000; the older -129 can be upgraded to the -132 configuration, with the new fan being a modular component. The F110-GE-132 was selected to power the F-16E/F Block 60 for the United Arab Emirates. [11] [12] Engine flight tests began in 2003, and first delivery was in 2005. [13] Some of the technology from the -132 is shared with the F110 Service Life Extension Program (SLEP).

Major applications

F-14

An F110-GE-400 viewed through the afterburner of a Grumman F-14D Tomcat F110-GE viewed through exhaust nozzle of an F-14.jpg
An F110-GE-400 viewed through the afterburner of a Grumman F-14D Tomcat

The F-14A entered service with the United States Navy in 1973 powered by Pratt & Whitney TF30s. By the end of the decade, following numerous problems with the original engine (and similar problems with the F100 on the F-15 and F-16), the DoD began procuring the upgraded TF30-P-414As. While these engines solved the serviceability problems, the fuel consumption and thrust was comparable to the initial model—considerably less than what the F-14 had been designed for; the F-14's originally planned Pratt & Whitney F401, an upscaled naval development of the F100 design, was also canceled due to costs and reliability issues.

After reviewing the results of the Air Force's AFE evaluation, the Navy would choose the F101 DFE to re-engine the F-14 in 1984, with the variant designated the F110-GE-400; the primary difference between the -400 and the Air Force's F110-GE-100 is length — the -400 had a 50-inch (1.3 m) tailpipe extension to suit the F-14 airframe, which was fitted downstream of the augmentor (afterburner section). The engine produced 26,950 lbf (119.9 kN) of uninstalled thrust with afterburner; [14] [15] installed thrust is 23,400 lbf (104.1 kN) with afterburner at sea level, which rose to 30,200 lbf (134.3 kN) at Mach 0.9. [16] This was similar to the F-14's originally intended F401 and provided a significant increase over the TF30's maximum uninstalled thrust of 20,900 lbf (93 kN). [17] These upgraded jets were initially known as F-14A+ before being re-designated as the F-14B, as were new production aircraft powered by the F110. The same engine also powered the final variant of the aircraft, the F-14D.

Proposed upgraded variants of the F-14, such as the Super Tomcat 21 (ST-21), were to be powered by the F110-GE-429, the naval variant of the F110-GE-129 IPE.

F-16

The F-16 Fighting Falcon entered service powered by the Pratt & Whitney F100 afterburning turbofan. Seeking a way to drive unit costs down, the USAF implemented the Alternate Fighter Engine (AFE) program in 1984, under which the engine contract would be awarded through competition. As of June 2005, the F110 powered 86% of the USAF's F-16C/Ds. While the F110-GE-100 can provide around 4,000 lbf (17.8 kN) more thrust than the F100-PW-200, it requires more airflow for the jet to fully exploit the engine; the standard normal shock inlet (NSI) limited the F110 to 25,735 lbf (114.5 kN). This led to the increase in the area of the engine inlet for the MCID. The F-16C/D Block 30/32s were the first to be built with a common engine bay, able to accept both engines, with Block 30s having the bigger MCID inlet (also known as "Big Mouth") for the F110 and Block 32s retaining the standard inlet for the F100.

An F-16C Block 50 fitted with the F110-GE-129. Lockheed F-16C USAF 92-3894 PACAF F-16 Demo Team RJNK.jpg
An F-16C Block 50 fitted with the F110-GE-129.

The F-16C/D Block 30 and 40 were powered by the 28,200 lbf (125.4 kN) F110-GE-100, while the Block 50 was powered by the 29,500 lbf (131.2 kN) F110-GE-129 IPE. The United Arab Emirates' F-16E/F Block 60 is powered by the 32,500 lbf (144.6 kN) F110-GE-132, as was the proposed Lockheed Martin-Tata F-21, based on the Block 60 and initially designated F-16IN, for the Indian Air Force MMRCA competition. [18] [19] [20]

Two derivatives of the F-16, the Mitsubishi F-2 and the General Dynamics F-16XL, are powered by the -129 IPE. The engines for the F-2 were license-built by IHI Corporation and designated F110-IHI-129.

F-15

A South Korean F-15K with two F110-GE-129 engines fitted. gonggun je11jeontu bihaengdan (7438363072).jpg
A South Korean F-15K with two F110-GE-129 engines fitted.

Although the Air Force chose the Pratt & Whitney F100-PW-229 as the IPE for the F-15E Strike Eagle, a pair of F110-GE-129s were mounted on one aircraft for flight testing. [21] [22] South Korea would choose the -129 to power 40 F-15K fighters, the first time production F-15s were powered by a General Electric engine. The engines were manufactured through a joint licensing agreement with Samsung Techwin Company. It has also been chosen by the Republic of Singapore Air Force (RSAF) to power its F-15SG.

The F-15E would be further developed into the Advanced Eagle with a new fly-by-wire control system that incorporates the F110-GE-129's FADEC. The Advanced Eagle would be the basis for Saudi Arabia's F-15SA, Qatar's F-15QA, and the U.S. Air Force's F-15EX. [23]

Variants

Applications

Specifications

F110-GE-100/400

Data fromAmerican Society of Mechanical Engineers, [7] Naval Air Systems Command (NAVAIR) [15]

General characteristics

  • Type: Afterburning turbofan
  • Length: 181.9  in (462  cm) for -100, 232  in (589  cm) for -400
  • Diameter: 35.66 in (90.6 cm) inlet, 46.5 in (118.1 cm) overall
  • Dry weight: 3,830  lb (1,740  kg)

Components

Performance

  • Maximum thrust:
    • -100: 16,600  lbf (73.8  kN) intermediate, 28,200 lbf (125.4 kN) full afterburner
    • -400: 16,333 lbf (72.7 kN) intermediate, 26,950 lbf (119.9 kN) full afterburner
  • Overall pressure ratio: 30.4:1
  • Air mass flow: 270 lb/s (122.4 kg/s), 254 lb/s (115.2 kg/s) with small F-16 inlet
  • Thrust-to-weight ratio: 4.33:1 intermediate power, 7.36:1 in afterburner

F110-GE-129

Data fromGeneral Electric, [25] [26] American Society of Mechanical Engineers (ASME), [10] MTU [27]

General characteristics

  • Type: Afterburning turbofan
  • Length: 181.9 in (462 cm)
  • Diameter: 46.5 in (118.1 cm)
  • Dry weight: 3,920 lb (1,780 kg)

Components

Performance

  • Maximum thrust:
    • Intermediate power: 17,155 lbf (76.3 kN)
    • Full afterburner: 29,500 lbf (131.2 kN)
  • Overall pressure ratio: 30.7:1
  • Air mass flow: 270 lb/s (122.4 kg/s)
  • Turbine inlet temperature: 2,750  °F (1,510  °C)
  • Thrust-to-weight ratio: 4.38:1 intermediate power, 7.50:1 in afterburner

F110-GE-132

Data fromGeneral Electric, [12] American Society of Mechanical Engineers (ASME), [10] Forecast International [28]

General characteristics

  • Type: Afterburning turbofan
  • Length: 181.9 in (462 cm)
  • Diameter: 46.5 in (118.1 cm)
  • Dry weight: 4,050 lb (1,840 kg)

Components

Performance

See also

Related development

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Afterburner</span> Adds additional thrust to an engine at the cost of increased fuel consumption

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.

<span class="mw-page-title-main">Bypass ratio</span> Proportion of ducted compared to combusted air in a turbofan engine

The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

<span class="mw-page-title-main">General Electric F101</span> Turbofan aircraft engine

The General Electric F101 is an afterburning turbofan jet engine. It powers the Rockwell B-1 Lancer strategic bomber fleet of the USAF. In full afterburner it produces a thrust of more than 30,000 pounds-force (130 kN). The F101 was GE's first turbofan with an afterburner.

<span class="mw-page-title-main">Pratt & Whitney F119</span> American low-bypass turbofan engine for the F-22 Raptor

The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Advanced Tactical Fighter (ATF) program, which resulted in the Lockheed Martin F-22 Raptor. The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8. The F119's nozzles incorporate thrust vectoring that enable them to direct the engine thrust ±20° in the pitch axis to give the F-22 enhanced maneuverability.

<span class="mw-page-title-main">Pratt & Whitney F135</span> Afterburning turbofan aircraft engine

The Pratt & Whitney F135 is an afterburning turbofan developed for the Lockheed Martin F-35 Lightning II, a single-engine strike fighter. It has two variants; a Conventional Take-Off and Landing (CTOL) variant used in the F-35A and F-35C, and a two-cycle Short Take-Off Vertical Landing (STOVL) variant used in the F-35B that includes a forward lift fan. The first production engines were delivered in 2009.

<span class="mw-page-title-main">Pratt & Whitney TF30</span> American low-bypass turbofan

The Pratt & Whitney TF30 is a military low-bypass turbofan engine originally designed by Pratt & Whitney for the subsonic F6D Missileer fleet defense fighter, but this project was cancelled. It was later adapted with an afterburner for supersonic designs, and in this form it was the world's first production afterburning turbofan, going on to power the F-111 and the F-14A Tomcat, as well as being used in early versions of the A-7 Corsair II without an afterburner. First flight of the TF30 was in 1964 and production continued until 1986.

<span class="mw-page-title-main">Pratt & Whitney F100</span> Afterburning turbofan engine that powers the F-15 Eagle and F-16 Fighting Falcon

The Pratt & Whitney F100 is an afterburning turbofan engine designed and manufactured by Pratt & Whitney to power the U.S. Air Force's "FX" initiative in 1965, which became the F-15 Eagle. The engine was to be developed in tandem with the F401 which shares a similar core but with the fan upscaled for the U.S. Navy's F-14 Tomcat, although the F401 was later abandoned due to costs and reliability issues. The F100 would also power the F-16 Fighting Falcon for the Air Force's Lightweight Fighter (LWF) program.

<span class="mw-page-title-main">General Electric J79</span> Axial flow turbojet engine

The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the Lockheed F-104 Starfighter, Convair B-58 Hustler, McDonnell Douglas F-4 Phantom II, North American A-5 Vigilante and IAI Kfir.

<span class="mw-page-title-main">General Electric J85</span> Turbojet aircraft engine

The General Electric J85 is a small single-shaft turbojet engine. Military versions produce up to 2,950 lbf (13.1 kN) of thrust dry; afterburning variants can reach up to 5,000 lbf (22 kN). The engine, depending upon additional equipment and specific model, weighs from 300 to 500 pounds. It is one of GE's most successful and longest in service military jet engines, with the civilian versions having logged over 16.5 million hours of operation. The United States Air Force plans to continue using the J85 in aircraft through 2040. Civilian models, known as the CJ610, are similar but supplied without an afterburner and are identical to non-afterburning J85 variants, while the CF700 adds a rear-mounted fan for improved fuel economy.

<span class="mw-page-title-main">General Electric F404</span> Turbofan aircraft engine family

The General Electric F404 and F412 are a family of afterburning turbofan engines in the 10,500–19,000 lbf (47–85 kN) class. The series is produced by GE Aerospace. Partners include Volvo Aero, which builds the RM12 variant. The F404 was developed into the larger F414 turbofan, as well as the experimental GE36 civil propfan.

<span class="mw-page-title-main">General Electric F414</span> American afterburning turbofan engine

The General Electric F414 is an American afterburning turbofan engine in the 22,000-pound thrust class produced by GE Aerospace. The F414 originated from GE's widely used F404 turbofan, enlarged and improved for use in the Boeing F/A-18E/F Super Hornet. The engine was developed from the F412 non-afterburning turbofan planned for the A-12 Avenger II, before it was canceled.

<span class="mw-page-title-main">Volvo RM12</span> Jet engine

Reaktionsmotor 12 (RM12) is a low-bypass afterburning turbofan jet engine developed for the Saab JAS 39 Gripen fighter. A version of the General Electric F404, the RM12 was produced by Volvo Aero. The last of the 254 engines was produced on 24 May 2011, at which time it had reached 160,000 flight hours without any serious incidents.

The General Electric F118 is a non-afterburning turbofan engine produced by GE Aviation, and is derived from the General Electric F110 afterburning turbofan.

<span class="mw-page-title-main">General Electric YF120</span> American fighter variable-cycle turbofan engine

The General Electric YF120, internally designated as GE37, was a variable cycle afterburning turbofan engine designed by General Electric Aircraft Engines in the late 1980s and early 1990s for the United States Air Force's Advanced Tactical Fighter (ATF) program. It was designed to produce maximum thrust in the 35,000 lbf (156 kN) class. Prototype engines were installed in the two competing technology demonstrator aircraft, the Lockheed YF-22 and Northrop YF-23.

<span class="mw-page-title-main">Pratt & Whitney PW1120</span> Turbojet engine

The Pratt & Whitney PW1120 turbojet is a derivative of the F100 turbofan. It was installed as a modification to a single F-4E fighter jet, and powered the canceled IAI Lavi.

<span class="mw-page-title-main">Saturn AL-31</span> Family of turbofan engines used by the Soviet military

The Saturn AL-31 is a family of axial flow turbofan engines, developed by the Lyulka design bureau in the Soviet Union, now NPO Saturn in Russia, originally as a 12.5-tonne powerplant for the Sukhoi Su-27 long range air superiority fighter. The AL-31 currently powers the Su-27 family of combat aircraft and some variants of the Chengdu J-10 multirole jet fighter. Assembly of the engine is also performed under license in India by HAL, for the Sukhoi Su-30MKI. Improved variants power the fifth-generation Sukhoi Su-57 and Chengdu J-20.

<span class="mw-page-title-main">Vought Model 1600</span> Proposed fighter aircraft

The Vought/General Dynamics Model 1600 series was a fighter aircraft proposal designed for the United States Navy's Navy Air Combat Fighter (NACF) program. The Model 1600 was a carrier-based derivative of the General Dynamics F-16 Fighting Falcon, but lost to the Northrop/McDonnell Douglas F/A-18 Hornet.

<span class="mw-page-title-main">General Electric Affinity</span> Supersonic aircraft engine design

The General Electric Affinity was a turbofan developed by GE Aviation for supersonic transports. Conceived in May 2017 to power the Aerion AS2 supersonic business jet, initial design was completed in 2018 and detailed design in 2020 for the first prototype production. GE Aviation discontinued development of the engine in May 2021. Its high-pressure core is derived from the CFM56, matched to a new twin fan low-pressure section for a reduced bypass ratio better suited to supersonic flight.

<span class="mw-page-title-main">IHI Corporation XF9</span> 2010s Japanese turbofan aircraft engine

The IHI XF9 is a low-bypass afterburning turbofan engine developed by the Acquisition, Technology & Logistics Agency (ATLA) of Ministry of Defense of Japan (MoD) and IHI Corporation.

<span class="mw-page-title-main">Pratt & Whitney F401</span> Turbofan Engine

The Pratt & Whitney F401 was an afterburning turbofan engine developed by Pratt & Whitney in tandem with the company's F100. The F401 was intended to power the Grumman F-14 Tomcat and Rockwell XFV-12, but the engine was canceled due to costs and development issues.

References

  1. "TEI > Welcome". Archived from the original on 2014-11-26. Retrieved 2014-11-07.
  2. F-16 Air Forces - Turkey. F-16.net. Retrieved on 2013-08-16.
  3. 1 2 3 Frank Camm (1993). The Development of the F100-PW-220 and F110-GE-100 Engines: A Case Study of Risk Management and Risk Assessment (PDF). RAND (Report).
  4. Coalson, M.S. (18 April 1982). Status Report of the USAF's Engine Model Derivative Program. American Society of Mechanical Engineers. doi:10.1115/82-GT-183. ISBN   978-0-7918-7957-3. S2CID   109148328.
  5. "F110-129, the end of an era". U.S. Air Force. 21 November 2014.
  6. Reubush, David E.; Carlson, John R. (1 March 1982). Effects of installation of F101 DFE exhaust nozzles on the afterbody-nozzle characteristics of the F-14 airplane (Report). NASA.
  7. 1 2 Coalson, Michael S. (1984). DEVELOPMENT OF THE F110-GE-100 ENGINE (Technical report). ASME. 84-GT-13.
  8. "GE Aircraft Engines Military Engine Status Report". General Electric Aerospace. 15 June 1997.
  9. "X-62A VISTA fact sheet". Edwards AFB (U.S. Air Force).
  10. 1 2 3 Wadia, A.R.; James, F.D. (2000). F110-GE-129 EFE – Enhanced Power Through Low Risk Derivative Technology (Technical report). ASME.
  11. "GE Launches F110 Fighter Engine Variant with $400 Million Win at United Arab Emirates". General Electric. 14 March 2000.
  12. 1 2 "F110-GE-132 turbofan engines" (PDF). General Electric.
  13. "GE starts up F110-132 test programme". Flight Global. 23 June 2003.
  14. "F−14 TF30−P−414 TO F110−GE−400 ENGINE UPGRADE TECHNICAL COMPARISON" (PDF). Archived from the original (PDF) on 2010-06-15.
  15. 1 2 Standard Aircraft Characteristics (SAC) F-14D (PDF) (Report). July 1985. Archived from the original (PDF) on 21 July 2022.
  16. NAVAIR 01-F-14AAD-1A F-14D NATOPS FLIGHT MANUAL January 2004 PART 1 CH-2 Section 2.2 "Engine" pg "2-9".
  17. Flight Global Archive
  18. Global Security: F110 Retrieved 21 June 2008.
  19. "F110-GE-132 Engine Completes Initial Flight Tests". GE Aviation. 16 June 2003. Archived from the original on 11 December 2005.
  20. "The F110 Engine | GE Aviation".
  21. DeLisi, J.W. (16 April 1990). "F-15E/GE-129 Increased Performance Engine initial development flight test program". American Institute of Aeronautics and Astronautics (AIAA). doi:10.2514/6.1990-1266.
  22. "GE on F-15E". Flight Global. 30 April 1996.
  23. "GE ships first engines for F-15EX fighter".
  24. "General Electric beats Rolls-Royce to power Turkey's indigenous fighter jet". 31 October 2018.
  25. GE Aviation F110-GE-129/F110-GE-132
  26. datasheet GE-129 - pdf
  27. F110-GE-129 datasheet
  28. General Electric F110