Flader J55

Last updated
Flader J55
Type Turbojet
National origin United States
ManufacturerFredric Flader Inc
First run1948

The Flader J55, also known as the 124 within the company, was a small turbojet engine notable for its use of a supersonic axial-flow compressor. Development started at Fredric Flader Inc. in 1947, with the first examples being delivered in 1949. However, these delivered far lower power than predicted. Improved models followed in early 1952 that met the performance requirements, but demonstrated very poor reliability. When small engines from other companies became available, the J55 project was cancelled in 1952.

Contents

History

Supersonic compressors

An axial compressor consists of a series of propeller-like disks known as "stages", each of which compresses the incoming air in turn. As the air is compressed its volume decreases, so each stage has less diameter than the one before it.

In a normal turbojet, the compressors rotational speeds are limited so that the outer tips of the blades remain subsonic. If all of the stages are powered off of a common shaft, this means that the limiting rotational speed will be defined by the first stage, which is the largest. Stages further in will be operating with tip speeds that are much lower, which works against the general principle that faster rotational speeds are more efficient. Larger engines, like those on modern airliners, normally include two or three "spools", sections of the engine operating at different rotational speeds, allowing each section of the compressor to reach the highest RPM possible while remaining subsonic.

Additionally, in order for an aircraft to operate at supersonic airspeeds, aircraft normally use a series of ramps or cones to create shock waves that progressively slow the air to subsonic speeds before it reaches the compressor. These intakes create drag that must be overcome by the engines.

A compressor that works at supersonic speeds would thus have improved performance, at least in theory. This would allow it to operate at higher rotational speeds, as well as reducing or eliminating the need for the complex inlets. During the early days of engine development, supersonic aerodynamics were not well understood, and it was not clear whether such an engine would be more or less efficient than a conventional design.

In order to find out, between 1946 and 1948 engineers at the NACA Lewis Research Center carried out an early research program on supersonic compressor stages. These demonstrated very encouraging results; not only did such a design work, but the compression ratio across a single stage was much higher than in a subsonic design, as much as two times. [1] This would allow an engine with a given overall pressure ratio to be built with fewer stages, making it smaller, lighter and less complex.

Flader proposal

Fredric Flader Inc. was formed in 1944 to develop small turbine engines, initially based on a contract with the US Army Air Force for a 5,900 shp (4,400 kW) turboprop, the T33-FF-1. Flader opened a new plant in Tonawanda, New York to develop the engine, but the Army cancelled the project shortly after. [2] The company was saved by a US Navy contract for an 8-inch-diameter (200 mm) turbine for emergency power on small ships, but this contract was later won by Solar Turbines and work at Flader ended.

In 1946 the Army started developing the requirements for a series of three unmanned aircraft, one of which was a high-speed radio controlled target drone, the XQ-2. Ryan Aeronautical won the contract with their Firebee design, and on 7 February 1947 the Power Plant Laboratory at the Wright Air Development Center issued a tender for a small engine to power the Ryan airframe. [2] Flader's proposal, from 26 April 1947, proposed using a supersonic compressor in order to build a small engine suitable for the design. They predicted that the compressor would have a pressure ratio about 2.75, roughly twice that of conventional designs. This was enough that only a single centrifugal-flow compressor was needed to complete the compression cycle of the engine. [3]

In spite of the risks involved, Flader's proposal won the tender and development started two months later.

Early testing

Flader worked in close concert with the engineers at Lewis. They sent an early version of the compressor to them for testing in June 1948, which demonstrated performance far below the predicted value. Worse, contrary to expectations, the performance decreased with increasing rotational speed, the opposite of what Lewis's earlier research had suggested, which was one of the biggest reasons for using the design. This was later attributed to a thick boundary layer on the blades. Additionally, after about 35 hours of running time the leading edges of the compressor blades were found to be curled over, apparently due to extremely high aerodynamic loads. [4]

In mid-1949 Flader delivered two derated engines, XJ55-FF-1's, to the Air Force for testing. These delivered only 450 lbf (2,000 N) of thrust, far below what was needed to power the Firebee. [4] However, Flader continued working on the design, and it had greatly improved by late 1951. In January 1952 they delivered one of these improved models and on 24 January it ran at 700 lbf (3,100 N), meeting the requirements. However, during a second test on 31 January the engine failed shortly after running for one minute at 700 lbf (3,100 N). [5]

Although it appeared that the basic design was able to deliver its promised performance, at that point it was far from a complete design. Weight and fuel consumption were both above the design estimates, the various support systems like fuel and oil pumps were not self-contained, and it remained susceptible to compressor surging. Flader estimated that these problems would require another three years of development to fix. [5]

Cancellation

At that point, two new small engines with roughly the required power had come to market, the Fairchild J44 and the Continental J69, a licensed version of the French Turbomeca Marboré. The Air Force decided to use the J69 in the Firebee, and cancelled development of the J55 shortly after. [5]

Flader made several other one-off designs, but found no lasting work in the field and eventually sublet their plants to Eaton Manufacturing in 1955. Eaton moved on, and Flader was wound down on 2 September 1957. [6]

Description

The J55 looked like a conventional axial-flow engine overall, but the equipment section was located in front of the engine in an oversized spinner area. Behind the spinner was the intake area and the supersonic compressor stage. Behind this was the single centrifugal stage, in a separate cylindrical section. This was followed by a canular combustion area and then a single turbine stage. [7]

Specifications (J55-FF-1 Lieutenant 124)

Data from Aircraft Engines of the World 1949, [8] Jane's All the World's Aircraft 1949-50, [9] Flight 11 May 1951 [7]

General characteristics

Components

Performance

700 lbf (3,113.76 N) at 26,800 rpm at sea level maximum continuous / cruise
350 lbf (1,556.88 N) at 19,800 rpm idle

Related Research Articles

Jet engine Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine discharging a fast-moving jet that generates thrust by jet propulsion. While this broad definition can include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion airbreathing jet engine such as a turbojet, turbofan, ramjet, or pulse jet. In general, jet engines are internal combustion engines.

Turbofan Airbreathing jet engine designed to provide thrust by driving a fan

The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the turbo portion refers to a gas turbine engine which achieves mechanical energy from combustion, and the fan, a ducted fan that uses the mechanical energy from the gas turbine to accelerate air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

Turbojet Airbreathing jet engine, typically used in aircraft

The turbojet is an airbreathing jet engine, typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

de Havilland Gyron 1950s British turbojet aircraft engine

The de Havilland PS.23 or PS.52 Gyron, originally the Halford H-4, was Frank Halford's last turbojet design while working for de Havilland. Intended to outpower any design then under construction, the Gyron was the most powerful engine of its era, producing 20,000 lbf (89 kN) "dry", and 27,000 lbf (120 kN) with afterburner. The design proved too powerful for contemporary aircraft designs and saw no production use. It was later scaled down to 45% of its original size to produce the de Havilland Gyron Junior, which was somewhat more successful.

CFE CFE738

The CFE738 is a small turbofan engine aimed at the business/commuter jet market manufactured by the CFE Company, and is used on the Dassault Falcon 2000.

The Fairchild J83 turbojet was developed starting in 1955 to power cruise missiles used as un-armed decoys for bomber aircraft. The engine's development was terminated in November 1958.

Rolls-Royce/Snecma Olympus 593 1960s British/French turbojet aircraft engine

The Rolls-Royce/Snecma Olympus 593 was an Anglo-French turbojet with reheat (afterburners) which powered the supersonic airliner Concorde. It was initially a joint project between Bristol Siddeley Engines Limited (BSEL) and Snecma which was derived from the Bristol Siddeley Olympus 22R engine. Rolls-Royce Limited acquired BSEL in 1966 during development of the engine making BSEL the Bristol Engine Division of Rolls-Royce.

Westinghouse J30

The Westinghouse J30, initially known as the Westinghouse 19XB, was a turbojet engine developed by Westinghouse Electric Corporation. It was the first American-designed turbojet to run, and only the second axial-flow turbojet to run outside Germany.

Components of jet engines Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

Fairchild J44

The Fairchild J44 was a small turbojet developed in the 1940s by the Fairchild Engine Division.

Volvo RM8

The Volvo RM8 is a low-bypass afterburning turbofan jet engine developed for the Saab 37 Viggen fighter. In 1962, the Pratt & Whitney JT8D-1 engine was chosen to power the Viggen in absence of a suitable and available engine designed for military use. Basically a licensed-built version of the JT8D, heavily modified for supersonic speeds, with a Swedish-designed afterburner, the RM8 was produced by Svenska Flygmotor.

Williams F121

The Williams F121 is a small turbofan engine designed for use in the AGM-136 Tacit Rainbow anti-radiation cruise missile.

Power Jets W.1

The Power Jets W.1 was a British turbojet engine designed by Frank Whittle and Power Jets. The W.1 was built under contract by British Thomson-Houston (BTH) in the early 1940s. It is notable for being the first British jet engine to fly, as the "Whittle Supercharger Type W1", powering the Gloster E.28/39 on its maiden flight at RAF Cranwell on 15 May 1941. The W.1 was superseded by the Power Jets W.2.

Teledyne CAE J402

The Teledyne CAE J402 is a small turbojet engine. Several variants have been developed to power unmanned air vehicles such as missiles and target drones. Developed in the 1970s for the Harpoon anti-ship missile, the J402 was the first jet engine to be designed as a "wooden round", meaning that the engine had to be able to sit for long periods without maintenance or inspection and work right away.

Turbomeca Gabizo Small turbojet engine developed in France in the 1950s

The Turbomeca Gabizo was a small turbojet engine produced by Turbomeca from the 1950s. The components were designed to take the stresses of high-speed fighter aircraft with some variants featuring afterburner.

An airbreathing jet engine is a jet engine that emits a jet of hot exhaust gases formed from air that is forced into the engine by several stages of centrifugal, axial or ram compression, which is then heated and expanded through a nozzle. They are typically gas turbine engines. The majority of the mass flow through an airbreathing jet engine is provided by air taken from outside of the engine and heated internally, using energy stored in the form of fuel.

Westinghouse J32

The Westinghouse J32 was a small turbojet engine developed by the Westinghouse Aviation Gas Turbine Division in the mid-1940s.

The West Engineering XJ38 was a small turbojet engine created by modifying World War II-surplus aircraft engine turbosuperchargers. Intended to be a cheap method of producing jet engines for target drones for the United States Navy, the latter lost interest in the project, which was soon discontinued because of lack of funding.

The Packard XJ49 was the first U.S. designed turbofan aircraft engine, and was developed by the Packard Motor Co. in the 1940s.

The Daimler-Benz DB 007,, was an early German jet engine design stemming from design work carried out by Karl Leist from 1939. This was a complex design featuring contra-rotating stages and a bypass fan, making it one of the earliest turbofan designs to be produced. The end result of the design work was built as the DB 007 and began testing on a test-bed on 27 May 1943. Due to the expected low performance, complexity and the good results achieved by much simpler designs, work was halted on the DB 007 in May 1944 by order of the RLM.

References

  1. Leyes and Fleming 1999, pg. 48
  2. 1 2 Leyes and Fleming 1999, pg. 46
  3. Leyes and Fleming 1999, pg. 47
  4. 1 2 Leyes and Fleming 1999, pg. 49
  5. 1 2 3 Leyes and Fleming 1999, pg. 50
  6. Leyes and Fleming 1999, pg. 51
  7. 1 2 Progress 1951, pg. 570
  8. Wilkinson, Paul H. (1949). Aircraft Engines of the World 1949 (7th ed.). London: Sir Isaac Pitman & Sons Ltd. pp. 56–57.
  9. Bridgman, Leonard, ed. (1949). Jane's All the World's Aircraft 1949-50. London: Sampson Low, Marston & Co. pp. 28d–29d.

Bibliography

  • Leyes, Richard A. II; Fleming, W. (1999). The history of North American small gas turbine aircraft engines. AIAA. ISBN   9781563473326.
  • "Jet Progress Abroad". Flight and Aircraft Engineer. LIX (2207): p.p. 566-567, 570. 11 May 1951.
  • Kay, Anthony L. (2007). Turbojet History and Development 1930-1960. 2 (1st ed.). Ramsbury: The Crowood Press. ISBN   978-1861269393.