XA100 | |
---|---|
XA100 on test stand | |
Type | Adaptive cycle engine |
National origin | United States |
Manufacturer | General Electric |
First run | December 2020 |
Major applications | Lockheed Martin F-35 Lightning II (proposed) |
The General Electric XA100 is an American adaptive cycle engine demonstrator being developed by General Electric (GE) for the Lockheed Martin F-35 Lightning II and form the technological foundation for the company's XA102 propulsion system for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).
The three-stream adaptive cycle design can direct air to the bypass third stream for increased fuel efficiency and cooling or to the core and fan streams for additional thrust and performance. The 45,000 lbf (200 kN) thrust class engine is expected to be significantly more powerful and efficient than existing low-bypass turbofans.
The U.S. Air Force and U.S. Navy began pursuing adaptive cycle engine in 2007 with the Adaptive Versatile Engine Technology (ADVENT) program, a part of the larger Versatile Affordable Advanced Turbine Engines (VAATE) program. [1] This technology research program was then followed by the Adaptive Engine Technology Demonstrator (AETD) program in 2012, which continued to mature the technology, with tests performed using demonstrator engines. GE's ground demonstrator consists of a three-stage adaptive fan and a high pressure compressor derived from CFM LEAP’s ten-stage compressor; the tests in 2015 yielded the highest combined compressor and turbine temperatures in the history of jet propulsion. [2] The follow-on Adaptive Engine Transition Program (AETP) was launched in 2016 to develop and test adaptive engines for sixth generation fighter propulsion as well as potential re-engining of the F-35 from the existing F135 turbofan engine. The demonstrators were assigned the designation XA100 for General Electric's design and XA101 for Pratt & Whitney's. The AETP goal is to demonstrate 25% improved fuel efficiency, 10% additional thrust, and significantly better thermal management. [3]
Further contract awards and modifications from Air Force Life Cycle Management Center (AFLCMC) in 2018 increased the focus on re-engining of the F-35, and GE's design became "F-35 design-centric"; there has also been investigations on applying the technology in upgrades for F-15, F-16, and F-22 propulsion systems. [4] GE's detailed design was completed in February 2019, and initial testing at GE's high-altitude test facility in Evendale, Ohio was concluded in May 2021. [5] [6] [7] GE expects that the A100 can enter service with the F-35A and C in 2027 at the earliest. [8] However, in 2023 the USAF chose an improved F135 under the Engine Core Upgrade (ECU) program over an adaptive cycle engine such as the XA100 due to cost as well as concerns over risk of integrating the new engine, initially designed for the F-35A, on the B and C. [9]
The XA100 is a three-stream adaptive cycle engine that can adjust the bypass ratio and fan pressure to increase fuel efficiency or thrust, depending on the scenario. It does this by employing an adaptive fan that can direct air into a third bypass stream in order to increase fuel economy and act as a heat sink for cooling; in particular, this would enable greater use of the high speed, low altitude part of the F-35 envelope. The increased cooling and power generation also enables the potential employment of directed energy weapons in the future. [10] [11] When additional thrust is needed, the air from the third stream can be directed to the core and fan streams. In addition to three-stream adaptive cycle configuration, the engine also uses new heat-resistant materials such as ceramic matrix composites (CMC) to enable higher turbine temperatures and improved performance. According to GE, the engine can offer up to 35% increased range and 25% reduction in fuel burn over current low-bypass turbofans. [12]
Data from Flight Global, [4] General Electric [12]
Related development
Comparable engines
Related lists
A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, pulse jet, or scramjet. In general, jet engines are internal combustion engines.
A turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a combination of references to the preceding generation engine technology of the turbojet and the additional fan stage. It consists of a gas turbine engine which achieves mechanical energy from combustion, and a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.
The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.
The Eurojet EJ200 is a military low-bypass turbofan used as the powerplant of the Eurofighter Typhoon. The engine is largely based on the Rolls-Royce XG-40 technology demonstrator, which was developed in the 1980s. The EJ200 is built by the EuroJet Turbo GmbH consortium. The EJ200 is also used in the Bloodhound LSR supersonic land speed record attempting car.
The General Electric/Rolls-Royce F136 was an afterburning turbofan engine being developed by General Electric, Allison Engine Company, and Rolls-Royce as an alternative powerplant to the Pratt & Whitney F135 for the Lockheed Martin F-35 Lightning II. The two companies stopped work on the project in December 2011 after failing to gather Pentagon support for further development.
The General Electric F110 is an afterburning turbofan jet engine produced by GE Aerospace. It was derived from the General Electric F101 as an alternative engine to the Pratt & Whitney F100 for powering tactical fighter aircraft, with the F-16C Fighting Falcon and F-14A+/B Tomcat being the initial platforms; the F110 would eventually power new F-15 Eagle variants as well. The engine is also built by IHI Corporation in Japan, TUSAŞ Engine Industries (TEI) in Turkey, and Samsung Techwin in South Korea as part of licensing agreements.
The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Advanced Tactical Fighter (ATF) program, which resulted in the Lockheed Martin F-22 Raptor. The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8. The F119's nozzles incorporate thrust vectoring that enable them to direct the engine thrust ±20° in the pitch axis to give the F-22 enhanced maneuverability.
The Pratt & Whitney F135 is an afterburning turbofan developed for the Lockheed Martin F-35 Lightning II, a single-engine strike fighter. It has two variants; a Conventional Take-Off and Landing (CTOL) variant used in the F-35A and F-35C, and a two-cycle Short Take-Off Vertical Landing (STOVL) variant used in the F-35B that includes a forward lift fan. The first production engines were delivered in 2009.
The General Electric TF39 is a high-bypass turbofan engine that was developed to power the Lockheed C-5 Galaxy. The TF39 was the first high-power, high-bypass jet engine developed. The TF39 was further developed into the CF6 series of engines, and formed the basis of the LM2500 and LM6000 marine and industrial gas turbine. On September 7, 2017, the last active C-5A powered with TF39 engines made its final flight to Davis-Monthan Air Force Base for retirement. The TF39 was effectively retired, and all remaining active C-5 Galaxies are Rebuilt C-5M Super Galaxies, powered by F138-GE-102 engines.
The Pratt & Whitney F100 is a low bypass afterburning turbofan engine. It was designed and manufactured by Pratt & Whitney to power the U.S. Air Force's "FX" initiative in 1965, which became the F-15 Eagle. The engine was to be developed in tandem with the F401 which shares a similar core but with an upscaled fan for the U.S. Navy's F-14 Tomcat. The F401 was later abandoned due to costs and reliability issues. The F100 also powered the F-16 Fighting Falcon for the Air Force's Lightweight Fighter (LWF) program.
The General Electric F404 and F412 are a family of afterburning turbofan engines in the 10,500–19,000 lbf (47–85 kN) class. The series is produced by GE Aerospace. Partners include Volvo Aero, which builds the RM12 variant. The F404 was developed into the larger F414 turbofan, as well as the experimental GE36 civil propfan.
The General Electric GE36 was an experimental aircraft engine, a hybrid between a turbofan and a turboprop, known as an unducted fan (UDF) or propfan. The GE36 was developed by General Electric Aircraft Engines, with its CFM International equal partner Snecma taking a 35 percent share of development. Development was cancelled in 1989.
The General Electric F414 is an American afterburning turbofan engine in the 22,000-pound thrust class produced by GE Aerospace. The F414 originated from GE's widely used F404 turbofan, enlarged and improved for use in the Boeing F/A-18E/F Super Hornet. The engine was developed from the F412 non-afterburning turbofan planned for the A-12 Avenger II, before it was canceled.
The General Electric YF120, internally designated as GE37, was a variable cycle afterburning turbofan engine designed by General Electric Aircraft Engines in the late 1980s and early 1990s for the United States Air Force's Advanced Tactical Fighter (ATF) program. It was designed to produce maximum thrust in the 35,000 lbf (156 kN) class. Prototype engines were installed in the two competing technology demonstrator aircraft, the Lockheed YF-22 and Northrop YF-23.
A variable cycle engine (VCE), also referred to as adaptive cycle engine (ACE), is an aircraft jet engine that is designed to operate efficiently under mixed flight conditions, such as subsonic, transonic and supersonic.
The Honeywell/ITEC F124 is a low-bypass turbofan engine derived from the civilian Honeywell TFE731. The F125 is an afterburning version of the engine. The engine began development in the late 1970s for the Republic of China (Taiwan) Air Force AIDC F-CK Indigenous Defence Fighter (IDF), and it first ran in 1979. The F124/F125 engine has since been proposed for use on other aircraft, such as the T-45 Goshawk and the SEPECAT Jaguar, and currently powers the Aero L-159 Alca and the Alenia Aermacchi M-346. The F124 has a rather unusual design for a two spool gas turbine engine, using both axial and centrifugal compressors in its high-pressure compressor. There are currently only three production variants of the engine, although several more have been proposed throughout its lifespan.
The Adaptive Versatile Engine Technology (ADVENT) program was an aircraft engine development program run by the United States Air Force with the goal of developing an efficient adaptive cycle, or variable cycle engine for next generation military aircraft; initial demonstrators were expected to be in the 20,000 lbf (89 kN) thrust class.
The Pratt & Whitney XA101 is an American adaptive cycle engine demonstrator being developed by Pratt & Whitney for the Lockheed Martin F-35 Lightning II and form the technological foundation for the company's XA103 propulsion system for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).
The General Electric XA102 is an American adaptive cycle engine demonstrator being developed by General Electric (GE). It is competing with the Pratt & Whitney XA103 as the powerplant for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).
The Pratt & Whitney XA103 is an American adaptive cycle engine demonstrator being developed by Pratt & Whitney. It is competing with the General Electric XA102 as the powerplant for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).