General Electric XA100

Last updated
XA100
XA100 USAF Approved Photo.jpg
XA100 on test stand
Type Adaptive cycle engine
National originUnited States
Manufacturer General Electric
First runDecember 2020
Major applications Lockheed Martin F-35 Lightning II (planned)

The General Electric XA100 is an American adaptive cycle engine demonstrator being developed by General Electric (GE) for the Lockheed Martin F-35 Lightning II and form the basis for the propulsion system for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).

Contents

The three-stream adaptive cycle design can direct air to the bypass third stream for increased fuel efficiency and cooling or to the core and fan streams for additional thrust and performance. The 45,000 lbf (200 kN) thrust class engine is expected to be significantly more powerful and efficient than existing low-bypass turbofans.

Development

The U.S. Air Force and U.S. Navy began pursuing adaptive cycle engine in 2007 with the Adaptive Versatile Engine Technology (ADVENT) program, a part of the larger Versatile Affordable Advanced Turbine Engines (VAATE) program. [1] This technology research program was then followed by the Adaptive Engine Technology Demonstrator (AETD) program in 2012, which continued to mature the technology, with tests performed using demonstrator engines. GE's ground demonstrator consists of a three-stage adaptive fan and a high pressure compressor derived from CFM LEAP’s ten-stage compressor; the tests in 2015 yielded the highest combined compressor and turbine temperatures in the history of jet propulsion. [2] The follow-on Adaptive Engine Transition Program (AETP) was launched in 2016 to develop and test adaptive engines for sixth generation fighter propulsion as well as potential re-engining of the F-35 from the existing F135 turbofan engine. The demonstrators were assigned the designation XA100 for General Electric's design and XA101 for Pratt & Whitney's. The AETP goal is to demonstrate 25% improved fuel efficiency, 10% additional thrust, and significantly better thermal management. [3] Further contract awards and modifications from Air Force Life Cycle Management Center (AFLCMC) in 2018 increased the focus on re-engining of the F-35, and GE's design became "F-35 design-centric"; there has also been investigations on applying the technology in upgrades for F-15, F-16, and F-22 propulsion systems. [4] GE's detailed design was completed in February 2019, and initial testing at GE's high-altitude test facility in Evendale, Ohio was concluded in May 2021. [5] [6] [7] GE expects that the A100 can enter service with the F-35A and C in 2027 at the earliest. [8]

Design

The XA100 is a three-stream adaptive cycle engine that can adjust the bypass ratio and fan pressure to increase fuel efficiency or thrust, depending on the scenario. It does this by employing an adaptive fan that can direct air into a third bypass stream in order to increase fuel economy and act as a heat sink for cooling; in particular, this would enable greater use of the high speed, low altitude part of the F-35 envelope. The increased cooling and power generation also enables the potential employment of directed energy weapons in the future. [9] [10] When additional thrust is needed, the air from the third stream can be directed to the core and fan streams. In addition to three-stream adaptive cycle configuration, the engine also uses new heat-resistant materials such as ceramic matrix composites (CMC) to enable higher turbine temperatures and improved performance. According to GE, the engine can offer up to 35% increased range and 25% reduction in fuel burn over current low-bypass turbofans.

Applications

Specifications (XA100-GE-100)

Data from Flight Global, [4]

General characteristics

Components

Performance

See also

Related development

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, or pulse jet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Turbofan</span> Airbreathing jet engine designed to provide thrust by driving a fan

The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the turbo portion refers to a gas turbine engine which achieves mechanical energy from combustion, and the fan, a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

<span class="mw-page-title-main">Afterburner</span> Adds additional thrust to an engine at the cost of increased fuel consumption

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of "reheat" contrasts with the meaning and implementation of "reheat" applicable to gas turbines driving electrical generators and which reduces fuel consumption.

<span class="mw-page-title-main">Bypass ratio</span> Proportion of ducted compared to combusted air in a turbofan engine

The bypass ratio (BPR) of a turbofan engine is the ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. A 10:1 bypass ratio, for example, means that 10 kg of air passes through the bypass duct for every 1 kg of air passing through the core.

<span class="mw-page-title-main">Lockheed Martin X-35</span> Concept demonstrator aircraft for Joint Strike Fighter program

The Lockheed Martin X-35 is a concept demonstrator aircraft (CDA) developed by Lockheed Martin for the Joint Strike Fighter program. The X-35 was declared the winner over the competing Boeing X-32 and a developed, armed version went on to enter production in the early 21st century as the F-35 Lightning II.

<span class="mw-page-title-main">Eurojet EJ200</span> Military low bypass turbofan

The Eurojet EJ200 is a military low-bypass turbofan used as the powerplant of the Eurofighter Typhoon. The engine is largely based on the Rolls-Royce XG-40 technology demonstrator, which was developed in the 1980s. The EJ200 is built by the EuroJet Turbo GmbH consortium. The EJ200 is also used in the Bloodhound LSR supersonic land speed record attempting car.

<span class="mw-page-title-main">Pratt & Whitney F119</span> American low-bypass turbofan engine for the F-22 Raptor

The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Advanced Tactical Fighter (ATF) program, which resulted in the Lockheed Martin F-22 Raptor. The engine delivers thrust in the 35,000 lbf (156 kN) class and was designed for sustained supersonic flight without afterburners, or supercruise. Delivering almost 22% more thrust with 40% fewer parts than its F100 predecessor, the F119 allows the F-22 to achieve supercruise speeds of up to Mach 1.8. The F119's nozzles incorporate thrust vectoring that enable them to direct the engine thrust ±20° in the pitch axis to give the F-22 enhanced maneuverability.

<span class="mw-page-title-main">Pratt & Whitney F135</span> Afterburning turbofan aircraft engine

The Pratt & Whitney F135 is an afterburning turbofan developed for the Lockheed Martin F-35 Lightning II, a single-engine strike fighter. It has two variants; a Conventional Take-Off and Landing (CTOL) variant used in the F-35A and F-35C, and a two-cycle Short Take-Off Vertical Landing (STOVL) variant used in the F-35B that includes a forward lift fan. The first production engines were delivered in 2009.

<span class="mw-page-title-main">General Electric TF39</span> Turbofan aircraft engine

The General Electric TF39 was a high-bypass turbofan engine that was developed to power the Lockheed C-5 Galaxy. The TF39 was the first high-power, high-bypass jet engine developed. The TF39 was further developed into the CF6 series of engines, and formed the basis of the LM2500 and LM6000 marine and industrial gas turbine. On September 7, 2017, the last active C-5A powered with TF39 engines made its final flight to Davis-Monthan Air Force Base for retirement. The TF39 was effectively retired, and all remaining active C-5 Galaxys are now powered by F138 engines.

<span class="mw-page-title-main">Pratt & Whitney F100</span> Afterburning turbofan engine that powers the F-15 Eagle and F-16 Fighting Falcon

The Pratt & Whitney F100 is an afterburning turbofan engine manufactured by Pratt & Whitney that powers the F-15 Eagle and F-16 Fighting Falcon.

<span class="mw-page-title-main">General Electric GE36</span>

The General Electric GE36 was an experimental aircraft engine, a hybrid between a turbofan and a turboprop, known as an unducted fan (UDF) or propfan. The GE36 was developed by General Electric Aircraft Engines, with its CFM International equal partner Snecma taking a 35 percent share of development. Development was cancelled in 1989.

<span class="mw-page-title-main">General Electric F414</span> American afterburning turbofan engine

The General Electric F414 is an American afterburning turbofan engine in the 22,000-pound thrust class produced by GE Aerospace. The F414 originated from GE's widely used F404 turbofan, enlarged and improved for use in the Boeing F/A-18E/F Super Hornet. The engine was developed from the F412 non-afterburning turbofan planned for the A-12 Avenger II, before it was canceled.

<span class="mw-page-title-main">Rolls-Royce/SNECMA M45H</span> 1970s British/French turbofan aircraft engine

The Rolls-Royce/SNECMA M45H is an Anglo-French medium bypass ratio turbofan produced specifically for the twin-engined VFW-Fokker 614 aircraft in the early 1970s.

<span class="mw-page-title-main">General Electric YF120</span> American fighter variable-cycle turbofan engine

The General Electric YF120, internally designated as GE37, was a variable cycle afterburning turbofan engine designed by General Electric Aircraft Engines in the late 1980s and early 1990s for the United States Air Force's Advanced Tactical Fighter (ATF) program. It was designed to produce maximum thrust in the 35,000 lbf (156 kN) class. Prototype engines were installed in the two competing technology demonstrator aircraft, the Lockheed YF-22 and Northrop YF-23.

<span class="mw-page-title-main">Variable cycle engine</span> Aircraft propulsion system efficient at a range of speeds higher and lower than sounds

A variable cycle engine (VCE), also referred to as adaptive cycle engine (ACE), is an aircraft jet engine that is designed to operate efficiently under mixed flight conditions, such as subsonic, transonic and supersonic.

<span class="mw-page-title-main">Honeywell/ITEC F124</span> US low-bypass turbofan

The Honeywell/ITEC F124 is a low-bypass turbofan engine derived from the civilian Honeywell TFE731. The F125 is an afterburning version of the engine. The engine began development in the late 1970s for the Republic of China (Taiwan) Air Force AIDC F-CK Indigenous Defence Fighter (IDF), and it first ran in 1979. The F124/F125 engine has since been proposed for use on other aircraft, such as the T-45 Goshawk and the SEPECAT Jaguar, and currently powers the Aero L-159 Alca and the Alenia Aermacchi M-346. The F124 has a rather unusual design for a two spool gas turbine engine, using both axial and centrifugal compressors in its high-pressure compressor. There are currently only three production variants of the engine, although several more have been proposed throughout its lifespan.

<span class="mw-page-title-main">Adaptive Versatile Engine Technology</span> US aircraft engine development program

The Adaptive Versatile Engine Technology (ADVENT) program was an aircraft engine development program run by the United States Air Force with the goal of developing an efficient adaptive cycle, or variable cycle engine for next generation military aircraft in the 20,000 lbf (89 kN) thrust class.

<span class="mw-page-title-main">Ishikawajima-Harima F3</span>

The Ishikawajima-Harima Heavy Industries (IHI) F3 is a low bypass turbofan engine developed in Japan by Ishikawajima-Harima Heavy Industries for the Kawasaki T-4 jet trainer aircraft. The first prototype engine, the XF3, was manufactured in 1981 and first flew in the XT-4 in July 1985. About 550 have been built.

An airbreathing jet engine is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet.

<span class="mw-page-title-main">Pratt & Whitney XA101</span> American adaptive cycle engine

The Pratt & Whitney XA101 is an American adaptive cycle engine demonstrator being developed by Pratt & Whitney for the Lockheed Martin F-35 Lightning II and form the basis for the propulsion system for the United States Air Force's sixth generation fighter program, the Next Generation Air Dominance (NGAD).

References

    1. Thomson, Daniel E. (14 April 2010). Versatile Affordable Advanced Turbine Engines Provide Game Changing Capability with Superior Fuel Efficiency (PDF). 11th Annual Science & Engineering Technology Conference/DoD Tech Expo. Charleston, South Carolina.
    2. Clark, Colin (18 June 2015). "GE Jet Sets Record; Will F-35 Get New AETD Engine?". Breaking Defense. Retrieved 11 January 2020.
    3. Mehta, Aaron (1 July 2016). "US Air Force Funds Next Advanced Engine Stage". DefenseNews. Retrieved 11 January 2020.
    4. 1 2 Trimble, Steven (9 July 2018). "USAF starts work on defining adaptive engine for future fighter". Flight Global. Retrieved 11 January 2020.
    5. Zazulia, Nick (1 March 2019). "Detailed Design Complete for GE's Revolutionary Adaptive Fighter Engine". Avionics International. Retrieved 11 January 2020.
    6. Norris, Guy (29 January 2015). "GE Details Sixth-Generation Adaptive Fighter Engine Plan". Aviation Week. Retrieved 11 January 2020.
    7. Norris, Guy (13 May 2021). "Tests Of GE XA100 Adaptive Combat Engine Exceed Performance Targets". Aviation Week.
    8. Tirpak, John (5 November 2021). "Next-Generation Power for Air Force Fighters". Air Force Magazine.
    9. Mathews, Jim (26 June 2017). "Engines of Innovation". Air Force Magazine. Retrieved 11 January 2020.
    10. Norris, Guy; Anselmo, Joe (21 July 2018). "F-35 Engine Upgrade Would Enable Directed Energy Weapons". Aviation Week. Retrieved 11 January 2020.