AE 3007 | |
---|---|
AE 3007 on a Cessna Citation X | |
Type | Turbofan |
National origin | United States |
Manufacturer | Allison Engine Company Rolls-Royce North America |
First run | 1991 [1] |
Major applications | Boeing MQ-25 Stingray Cessna Citation X Embraer ERJ family Northrop Grumman RQ-4 Global Hawk Northrop Grumman MQ-4C Triton |
Number built | 3,400+ |
Developed from | Rolls-Royce T406 |
The Rolls-Royce AE 3007 (US military: F137) is a turbofan engine produced by Rolls-Royce North America, sharing a common core with the Rolls-Royce T406 (AE 1107) and AE 2100. The engine was originally developed by the Allison Engine Company, hence the "AE" in the model number.
In 1988, Allison Engine Company (then owned by General Motors) and Rolls-Royce plc began joint studies of a 33 kN (7,400 lbf) RB580 to power the proposed Short Brothers FJX regional jet, combining the T406 core with a Rolls-Royce low-pressure spool. By late 1989, amid growing importance of the Rolls-Royce Trent engine and uncertainty over the Short Brothers project, Rolls-Royce quit. Allison Engine Company pursued the engine alone, revising the design as a new wide-chord snubberless (or clapperless) titanium fan and low-pressure turbine. [1]
On March 23, 1990, Allison's GMA 3007 was selected to power the Embraer EMB-145 regional jet. [2] In September 1990, it was selected for the Cessna Citation X. [1] The engine was first ground tested in mid-1991. [3] On August 21, 1992, the engine had its first test flight on a Cessna Citation VII testbed aircraft. [4] In 1995, Rolls-Royce bought Allison Engine Company and the engine had its first flight on the EMB-145. The Citation X AE3007C, producing 28.655 kN (6,442 lbf), was certificated by the FAA in February 1995; while the EMB-145 AE3007A, producing 39 kN (8,800 lbf), was certificated in mid-1996. [1]
In 1995, Teledyne Ryan selected the AE3007H for the Tier II+ unmanned surveillance aircraft (now the Northrop Grumman RQ-4 Global Hawk), which required long-endurance at up to 70,000 ft (21,000 m). It was tested at these altitudes in February 1996 at the Arnold Engineering Development Center in Tennessee and the first was delivered in May 1996. [1]
More than 3,400 engines have been delivered. [5] In 2014, 2,976 civil engines were installed. [6] In 2017, the AE 3007 in the ERJ family had flown over 53 million hours and over 44 million cycles. [7] It was flown for more than 60 million hours. [8] The engine is manufactured at the Rolls-Royce North America engine plant in Indianapolis, Indiana. [9]
The AE 3007 is a direct drive turbofan engine with a single stage fan, a 14-stage axial compressor with 6 stages of variable vanes including inlet guide vanes, an annular combustor, a two-stage high pressure turbine and a 3-stage low pressure turbine. The accessory gearbox is mounted at its bottom and two single channel FADEC units are mounted in the aircraft. It has fore and aft mounting provisions for underwing pylon or aft fuselage installation. [10] The AE 3007 has a thrust-specific fuel consumption (TSFC) of 0.36 lb/(lbf⋅h) (10 g/(kN⋅s)) at static sea level takeoff and 0.65 lb/(lbf⋅h) (18 g/(kN⋅s)) at a cruise speed of Mach 0.8 and altitude of 35,010 ft (10,670 m). [11] The engine's A variant was designed to produce a cruise thrust of 6.3 kN (640 kgf; 1,420 lbf) at Mach 0.8 and 41,000 ft (12,000 m) altitude. [12]
Variant | AE 3007C | AE 3007A |
---|---|---|
Compressor | Single-stage fan and 14-stage axial HP [10] | |
Fan | 24 blades, 38.5 in (98 cm ) diameter [21] | |
Combustor | Annular [10] | |
Turbine | 2-stage HP, 3-stage LP [10] | |
Takeoff thrust | 6,442–7,042 lbf (28.66–31.32 kN ) | 7,580–9,500 lbf (33.7–42.3 kN) |
Fan shaft rpm | 7,344–7,518 | 7,716–8,248 |
Gas generator rpm | 15,196–15,452 | 15,452–16,245 |
Length | 115.08 in (292.3 cm) | |
Width | 46.14 in (117.2 cm) | |
Height | 55.70 in (141.5 cm) | |
Weight | 1,614–1,641 lb (732–744 kg ) | 1,657–1,681 lb (752–762 kg) |
Thrust to weight | 4–4.3 | 4.6–5.6 |
TSFC SSL | 0.36 lb/(lbf⋅h) (10 g/(kN⋅s)) [11] | |
Interstage Turbine Temperature [10] | 888–907 °C (1,630–1,665 °F ) | 921–970 °C (1,690–1,778 °F) |
Overall Pressure ratio | 23:1 [21] | |
Bypass ratio | 5:1 [21] |
Related development
Comparable engines
Related lists
The Embraer ERJ family are regional jets designed and produced by the Brazilian aerospace company Embraer. The family includes the ERJ 135, ERJ 140, and ERJ 145, as well as the Legacy 600 business jet and the R-99 family of military aircraft.
The Rolls-Royce Trent is a family of high-bypass turbofans produced by Rolls-Royce. It continues the three spool architecture of the RB211 with a maximum thrust ranging from 61,900 to 97,000 lbf . Launched as the RB-211-524L in June 1988, the prototype first ran in August 1990. Its first variant is the Trent 700 introduced on the Airbus A330 in March 1995, then the Trent 800 for the Boeing 777 (1996), the Trent 500 for the A340 (2002), the Trent 900 for the A380 (2007), the Trent 1000 for the Boeing 787 (2011), the Trent XWB for the A350 (2015), and the Trent 7000 for the A330neo (2018). It has also marine and industrial variants like the RR MT30.
The IAE V2500 is a two-shaft high-bypass turbofan engine built by International Aero Engines (IAE) which powers the Airbus A320 family, the McDonnell Douglas MD-90, and the Embraer C-390 Millennium.
The Engine Alliance GP7000 is a turbofan jet engine manufactured by Engine Alliance, a joint venture between General Electric and Pratt & Whitney. It is one of the powerplant options available for the Airbus A380, along with the Rolls-Royce Trent 900.
The Rolls-Royce AE 2100 is a turboprop developed by Allison Engine Company, now part of Rolls-Royce North America. The engine was originally known as the GMA 2100, when Allison was a division of former corporate parent General Motors.
The Rolls-Royce BR700 is a family of turbofan engines for regional jets and corporate jets. It is manufactured in Dahlewitz, Germany, by Rolls-Royce Deutschland: this was initially a joint venture of BMW and Rolls-Royce plc established in 1990 to develop this engine. The BR710 first ran in 1995. The United States military designation for the BR725 variant is F130.
The Rolls-Royce RB.183 Tay is a medium-bypass turbofan engine, developed from the RB.183 Mk 555 Spey core and using a fan scaled directly from the Rolls-Royce RB.211-535E4 to produce versions with a bypass ratio of 3.1:1 or greater. The IP compressor and LP turbine were designed using technology from the RB.211 programme. The engine was first run in August 1984. The Tay 650 had a new HP turbine which incorporated new technology which had been proven with the RB.211-535E4. This engine also had a new combustor for improved durability. The Tay family is used on a number of airliners and larger business jets, including the Gulfstream IV family, Fokker 70 and Fokker 100, with a later version being used to re-engine Boeing 727-100s.
The Pratt & Whitney JT3D is an early turbofan aircraft engine derived from the Pratt & Whitney JT3C. It was first run in 1958 and was first flown in 1959 under a B-45 Tornado test aircraft. Over 8,000 JT3Ds were produced between 1959 and 1985. Most JT3D engines still in service today are used on military aircraft, where the engine is referred to by its US military designation of TF33.
The Allison T56 is an American single-shaft, modular design military turboprop with a 14-stage axial flow compressor driven by a four-stage turbine. It was originally developed by the Allison Engine Company for the Lockheed C-130 Hercules transport entering production in 1954. It has been a Rolls-Royce product since 1995 when Allison was acquired by Rolls-Royce. The commercial version is designated 501-D. Over 18,000 engines have been produced since 1954, logging over 200 million flying hours.
The Rolls-Royce Trent 800 is a high-bypass turbofan produced by Rolls-Royce plc, one of the engine options for the early Boeing 777 variants. Launched in September 1991, it first ran in September 1993, was granted EASA certification on 27 January 1995, and entered service in 1996. It reached a 40% market share, ahead of the competing PW4000 and GE90, and the last Trent 800-powered 777 was delivered in 2010. The Trent 800 has the Trent family three shaft architecture, with a 280 cm (110 in) fan. With a 6.4:1 bypass ratio and an overall pressure ratio reaching 40.7:1, it generates up to 413.4 kN of thrust.
The Williams FJ44 is a family of small, two-spool, turbofan engines produced by Williams International for the light business jet market. Until the recent boom in the very light jet market, the FJ44 was one of the smallest turbofans available for civilian applications. Although basically a Williams design, Rolls-Royce was brought into the project at an early stage to design, develop, and manufacture an air-cooled high-pressure (HP) turbine for the engine. The FJ44 first flew on July 12, 1988 on the Scaled Composites/Beechcraft Triumph aircraft.
The Pratt & Whitney Canada JT15D is a small turbofan engine built by Pratt & Whitney Canada. It was introduced in 1971 at 2,200 lbf (9,800 N) thrust, and has since undergone a series of upgrades to just over 3,000 lbf (13 kN) thrust in the latest versions. It is the primary powerplant for a wide variety of smaller jet aircraft, notably business jets.
The Pratt & Whitney Canada PW300 series is a family of turbofan jet engines developed by Pratt & Whitney Canada specifically for business jet applications.
The General Electric CF34 is a civilian high-bypass turbofan developed by GE Aviation from its TF34 military engine. The CF34 is used on a number of business and regional jets, including the Bombardier CRJ series, the Embraer E-Jets, and Comac ARJ21. In 2012, there were 5,600 engines in service.
The Lycoming ALF 502/LF 507 is a geared turbofan engine produced by Lycoming Engines, AlliedSignal, and then Honeywell Aerospace. The U.S. military designation for the ALF 502 is YF102.
The Progress D-18T is a 51,500 lbf (229 kN) high-bypass turbofan that powers the Antonov An-124 Ruslan and An-225 large freighters.
The Honeywell HTF7000 is a turbofan engine produced by Honeywell Aerospace. Rated in the 6,540–7,624 lbf (29.09–33.91 kN) range, the HTF7000 is used on the Bombardier Challenger 300/350, Gulfstream G280, Embraer Legacy 500/450 and the Cessna Citation Longitude. Its architecture could be extended for a range of 8,000 to 10,000 lbf thrust.
The Progress D-436 is a triple-spool high-bypass turbofan engine developed by the Ukrainian company Ivchenko-Progress, and manufactured by Motor Sich in Ukraine. It was initially developed to meet the requirements for late versions of the Yakovlev Yak-42 and the Antonov An-72 in the 1980s. The engine first ran in 1985 and was subsequently certified in 1987. Several variants have been developed and are currently in service with a variety of aircraft.
The Pratt & Whitney Canada PW800 is a series of turbofan engines in the 10,000–20,000 lbf (44–89 kN) thrust class, manufactured by Pratt & Whitney Canada. Intended for the regional jet and business jet market, the gear-less PW800 shares a common core with the larger, geared PW1000G. The first variants were certified on February 15, 2015, to power the new Gulfstream G500/G600. After that it has been certified also for the Dassault Falcon 6X in 2021.
The Allison T56 turboprop engine has been developed extensively throughout its production run, the many variants are described by the manufacturer as belonging to four main series groups.
{{cite report}}
: Unknown parameter |agency=
ignored (help)