General Electric F118

Last updated
F118
F118.jpg
An F118 engine
Type Turbofan
National origin United States
Manufacturer General Electric
First run1980s
Major applications Lockheed U-2
Northrop Grumman B-2 Spirit
Developed from General Electric F110

The General Electric F118 is a non-afterburning turbofan engine produced by GE Aviation, and is derived from the General Electric F110 afterburning turbofan.

Contents

Design and development

The F118 is a non-afterburning derivative of the F110 specially developed for the B-2 Spirit stealth bomber. A single stage HP turbine drives the 9 stage HP compressor, while a 2-stage LP turbine drives the 3 stage fan. The combustor is annular. In 1998, the USAF's Lockheed U-2S fleet was fitted with a modified version of the F118. [1]

Variants

F118-GE-100
Variant for the B-2 [2]
F118-GE-101
Variant for the U-2S [2]

Applications

Specifications (F118-100)

Data from [3]

General characteristics

Components

Performance

See also

Related development

Related lists

Related Research Articles

Turbofan Airbreathing jet engine designed to provide thrust by driving a fan

The turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a portmanteau of "turbine" and "fan": the turbo portion refers to a gas turbine engine which achieves mechanical energy from combustion, and the fan, a ducted fan that uses the mechanical energy from the gas turbine to accelerate air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

Eurojet EJ200 Military low bypass turbofan

The Eurojet EJ200 is a military low-bypass turbofan used as the powerplant of the Eurofighter Typhoon. The engine is largely based on the Rolls-Royce XG-40 technology demonstrator, which was developed in the 1980s. The EJ200 is built by the EuroJet Turbo GmbH consortium. The EJ200 is also used in the Bloodhound LSR supersonic land speed record attempting car.

General Electric F110

The General Electric F110 is an afterburning turbofan jet engine produced by GE Aviation. The F110 engine uses the same engine core design as the General Electric F101. The F118 is a non-afterburning variant. The engine is also license-built in Eskisehir, Turkey by TUSAŞ Engine Industries (TEI).

General Electric F101

The General Electric F101 is an afterburning turbofan jet engine. It powers the Rockwell B-1 Lancer strategic bomber fleet of the USAF. In full afterburner it produces a thrust of more than 30,000 pounds-force (130 kN). The F101 was GE's first turbofan with an afterburner.

Pratt & Whitney F119 American low-bypass turbofan engine for the F-22 Raptor

The Pratt & Whitney F119, company designation PW5000, is an afterburning turbofan engine developed by Pratt & Whitney for the Lockheed Martin F-22 Raptor advanced tactical fighter.

General Electric TF39 Turbofan aircraft engine

The General Electric TF39 was a high-bypass turbofan engine that was developed to power the Lockheed C-5 Galaxy. The TF39 was the first high-power, high-bypass jet engine developed. The TF39 was further developed into the CF6 series of engines, and formed the basis of the LM2500 marine and industrial gas turbine. On September 7, 2017, the last active C-5A powered with TF39 engines made its final flight to Davis-Monthan Air Force Base for retirement. The TF39 was effectively retired, and all remaining active C-5 Galaxys are now powered by F138 (CF6) engines.

Pratt & Whitney F100 Afterburning turbofan engine that powers the F-15 Eagle and F-16 Fighting Falcon.

The Pratt & Whitney F100 is an afterburning turbofan engine manufactured by Pratt & Whitney that powers the F-15 Eagle and F-16 Fighting Falcon.

Pratt & Whitney J57

The Pratt & Whitney J57 is an axial-flow turbojet engine developed by Pratt & Whitney in the early 1950s. The J57 was the first 10,000 lbf (45 kN) thrust class engine in the United States. The J57/JT3C was developed into the J52 turbojet, the J75/JT4A turbojet, the JT3D/TF33 turbofan, and the XT57 turboprop. The J57 and JT3C saw extensive use on fighter jets, jetliners, and bombers for many decades.

GE Honda HF120

The GE Honda HF120 is a small turbofan for the light business jet market, the first engine to be produced by GE Honda Aero Engines.

Pratt & Whitney J75

The Pratt & Whitney J75 is an axial-flow turbojet engine first flown in 1955. A two-spool design in the 17,000 lbf (76 kN) thrust class, the J75 was essentially the bigger brother of the Pratt & Whitney J57 (JT3C). It was known in civilian service as the JT4A, and in a variety of stationary roles as the GG4 and FT4.

General Electric CF6 Turbofan aircraft engine family

The General Electric CF6, US military designation F103, is a family of high-bypass turbofan engines produced by GE Aviation. Based on the TF39, the first high-power high-bypass jet engine, the CF6 powers a wide variety of civilian airliners. The basic engine core also powers the LM2500, LM5000, and LM6000 marine and power generation turboshafts. It is gradually being replaced by the newer GEnx family.

General Electric F404

The General Electric F404 and F412 are a family of afterburning turbofan engines in the 10,500–19,000 lbf (47–85 kN) class. The series are produced by GE Aviation. Partners include Volvo Aero, which builds the RM12 variant. The F404 was developed into the larger F414 turbofan, as well as the experimental GE36 civil propfan.

General Electric F414

The General Electric F414 is an American afterburning turbofan engine in the 22,000-pound thrust class produced by GE Aviation. The F414 originated from GE's widely used F404 turbofan, enlarged and improved for use in the Boeing F/A-18E/F Super Hornet. The engine was developed from the F412 non-afterburning turbofan planned for the A-12 Avenger II, before it was canceled.

Volvo RM12

The Volvo RM12 is a low-bypass afterburning turbofan jet engine developed for the Saab JAS 39 Gripen fighter. A version of the General Electric F404, the RM12 was produced by Volvo Aero.

General Electric TF34 Military turbofan engine

The General Electric TF34 is an American military turbofan engine used on the A-10 Thunderbolt II and S-3 Viking.

General Electric CF34 High bypass turbofan aircraft engine

The General Electric CF34 is a civilian high-bypass turbofan developed by GE Aircraft Engines from its TF34 military engine. The CF34 is used on a number of business and regional jets, including the Bombardier CRJ series, the Embraer E-Jets, and the Chinese ARJ21. In 2012, there were 5,600 engines in service.

Kuznetsov NK-32 1980s Soviet/Russian turbofan aircraft engine

The Kuznetsov NK-32 is an afterburning three-spool low bypass turbofan jet engine which powers the Tupolev Tu-160 supersonic bomber, and was fitted to the later model Tupolev Tu-144LL supersonic transport. It is the largest and most powerful engine ever fitted on a combat aircraft. It produces 245 kN (55,000 lbf) of thrust in afterburner.

Ivchenko-Progress AI-222

The Ivchenko-Progress AI-222 are a family of low-bypass turbofan engines.

The Klimov VK-3 was the first Soviet afterburning bypass turbojet engine. Designed by S V Lyunevich at Klimov, at OKB-117 in 1949, this engine first ran in 1952, and was qualified at 5,730 kg (12,632 lb) thrust (dry) and 8,440 kg (18,607 lb) thrust in 1954. The VK-3 was developed for the Mikoyan-Gurevich I-3 (I-380) and I-3U/I-5 (I-410) fighters. First flown in the I-3U in July 1956, the engine's performances was good but its reliability was poor. Even after modifications in December 1956 when newly designed compressor blades were installed, developmental problems continued, the program was ultimately canceled in January 1958. The engine was superseded by the Lyulka AL-7F, a less modern but more efficient engine.

General Electric Affinity

The General Electric Affinity was a turbofan developed by GE Aviation for supersonic transports. Launched in May 2017 to power the Aerion AS2 supersonic business jet, its initial design was completed in 2018 before its detailed design in 2020 for the first prototype production. GE Aviation discontinued development of the engine in May 2021. Its high-pressure core is derived from the CFM56, matched to a new twin fan low-pressure section for a reduced bypass ratio better suited to supersonic flight.

References

Notes

  1. Donald, David, ed. "U-2, The Second Generation". Black Jets. AIRtime, 2003. ISBN   1-880588-67-6.
  2. 1 2 Taylor 1996, p 594
  3. Gas Turbine Engines. Aviation Week & Space Technology Source Book 2009. p. 118.

Bibliography