General Electric GE90

Last updated

GE90
Logo Commercial General Electric GE90.png
General Electric GE90 displayed at Farnborough Air Show 2008.jpg
GE90-115B
Type Turbofan
National originUnited States
Manufacturer GE Aerospace
First runMarch 1993 [1]
Major applications Boeing 777
Produced1993-present
Number built2,800 by July 2020 [2]
Developed from General Electric CF6
Developed into General Electric GEnx
Engine Alliance GP7000
General Electric GE9X

The General Electric GE90 is a family of high-bypass turbofan aircraft engines built by GE Aerospace for the Boeing 777, with thrust ratings from 81,000 to 115,000 pounds-force (360 to 510 kilonewtons ). It entered service with British Airways in November 1995. It is one of three options for the 777-200, -200ER, and -300 versions, and the exclusive engine of the -200LR, -300ER, and 777F. It was the largest jet engine, [3] until being surpassed in January 2020 by its successor, the 110,000 lbf (490 kN) GE9X, which has a 6-inch (15 cm) larger diameter fan. However, the GE90-115B, the most recent variant, is rated for a higher thrust (115,000 lbs) than the GE9X.

Contents

Background

In the early 1980s, GE began to develop an unducted fan (UDF) engine, which was thought to be a more fuel-efficient option to propel short-haul airliners, a compelling proposition after the 1979 oil crisis. NASA gave GE a grant in February 1984 to continue its research, eventually building the experimental GE36. One of the major innovations for the engine were its carbon fiber composite fan blades, which were both lighter and stronger than traditional materials. [4] However, the UDF was less reliable than the turbofans of the era, lower fuel costs made the cost of developing the engine less attractive, and the company was worried the GE36 would cannibalize sales of the highly successful CFM56 engine it had co-developed with Snecma of France. [4]

Development

The GE90 engine was launched in 1990 to provide a large turbofan engine for the Boeing 777, a wide-body, long-range, twin-engine jet airliner. [5] GE Aviation teamed with Snecma (France, 24%), IHI (Japan) and Avio (Italy) for the program. [6] The GE90 would face stiff competition as Pratt & Whitney and Rolls-Royce would also offer engines for the 777, the PW4000 and Trent 800, respectively.

The major innovation of the GE90 was that it used 22 carbon fiber composite fan blades, technology first developed for the GE36. These blades provided double the strength at one-third the weight of traditional titanium fan blades. The 22 fan blades were a significant reduction from the 38 blades used in GE's prior large turbofan, the CF6, despite the 30-inch (760 mm) greater diameter of the GE90. Having fewer fan blades reduces the engine weight and improves aerodynamic efficiency.

With the stiff competition to equip the 777, GE tried to branch out and use the GE90 for other aircraft. Then-CEO Brian H. Rowe went so far as to offer to pay for the development of the GE90 for the Airbus A330, but Airbus rebuffed the plan, instead choosing to focus on the four-engine A340 for the long-haul market. [7]

In the late 1990s, Boeing began developing ultra-long-range variants of the 777, the 777-200LR and 777-300ER. For these aircraft a more powerful engine in the thrust class of 100,000 lbf (440 kN) was required, leading to talks between Boeing and engine manufacturers. General Electric offered to develop the GE90-115B engine, [8] while Rolls-Royce proposed developing the Trent 8104 engine. [9] In 1999, Boeing announced an agreement with General Electric, beating out rival proposals. [8] Under the deal with General Electric, Boeing agreed to only offer GE90 engines on new 777 versions. [8] The GE90-115B had its first run at the GE facility in Peebles, Ohio in November 2001. [10]

Design

The GE90-115B diameter is 128 in (325 cm) while the 777 fuselage is 244 in (620 cm) A6-ECF B777-300 Emirates front (4134226438).jpg
The GE90-115B diameter is 128 in (325 cm) while the 777 fuselage is 244 in (620 cm)

The GE90's 10-stage high-pressure compressor developed a then-industry record pressure ratio of 23:1 and is driven by a 2-stage, air-cooled, HP turbine. A 3-stage low-pressure compressor, situated directly behind the fan, supercharges the core. The fan/LPC is driven by a 6-stage low-pressure turbine.

The higher-thrust variants, GE90-110B1 and -115B, have a different architecture from that of the earlier GE90 versions. General Electric incorporated an advanced larger diameter fan made from composite materials which enhanced thrust at low flight speeds. However, GE also needed to increase core power to improve net thrust at high flight speeds. Consequently, GE elected to increase core capacity, which they achieved by removing one stage from the rear of the HP compressor and adding an additional stage to the LP compressor, which more than compensated for the reduction in HP compressor pressure ratio, resulting in a net increase in core mass flow . [11] The higher-thrust GE90 variants are the first production engines to feature swept rotor blades. The nacelle has a maximum diameter of 166 in (4,200 mm). [12] Each of the 22 fan blades on the GE90-115B have a length of 4 feet (1.2 meters) and a mass of less than 50 pounds (23 kilograms). [13]

Operational history

As one of the three available engines for the new Boeing 777 long-range airliner, the GE90 was an all-new $2 billion design in contrast to the offerings from Pratt & Whitney and Rolls-Royce which were modifications of existing engines. [14]

The first General Electric-powered Boeing 777 was delivered to British Airways on November 12, 1995. [15] The aircraft, with two GE90-77Bs, entered service five days later. Initial service was affected by gearbox bearing wear concerns, which caused the airline to temporarily withdraw its 777 fleet from transatlantic service in 1997. British Airways' aircraft returned to full service later that year. [16]

Problems with GE90 development and testing caused delays in Federal Aviation Administration certification. In addition the GE90's increased thrust was not yet required by airlines and it was also the heaviest engine of the three available choices, making it the least popular option while the Rolls-Royce engine was the most popular. British Airways soon replaced the GE90 with Rolls-Royce engines on their 777s. [14] [17]

A GE90-115B engine GE90-115B Farnborough 2004 cropped.JPG
A GE90-115B engine

For Boeing's second-generation 777 long-range versions (later named 777-200LR, 777-300ER, and 777F), greater thrust was needed to meet the aircraft requirements. General Electric and Pratt & Whitney insisted on a winner-take-all contract due to the $500 million investment in engine modifications needed to meet the requirements. GE received sole engine supplier status for the higher-thrust engine variants for the 777-200LR, -300ER, and 777F. [14] [17] The improved version entered service with Air France in May 2004. [18]

The higher thrust GE90-110B1 and -115B engines, in combination with the second-generation 777 variants -200LR and -300ER, were primary reasons for 777 sales being greater than those of the rival A330/340 series. [19] Using two engines produces a typical operating cost advantage of around 8–9% for the -300ER over the A340-600. [20] The 777-300ER was also seen as a 747-400 replacement amid rising fuel prices given its 20% fuel burn advantage. [21]

Until passed by its derivative, the GE9X, the GE90 series held the title of the largest engines in aviation history. The fan diameter of the original series being 123 in (310 cm), and the largest variant GE90-115B has a fan diameter of 128 in (330 cm). As a result, the GE90 engine can only be air-freighted using an outsize cargo aircraft such as the Antonov An-124, which restricts shipping options if, due to an emergency diversion, a 777 were stranded needing an engine change. If the fan and fan case are removed the engine may be shipped using a 747 Freighter. [22]

The -94B for the -200ER was retrofitted with some of the first FAA-approved 3D-printed components. [23]

In 2011, its list price was US$ 27.5 million, and it had an in-flight shutdown rate (IFSD) of one per million engine flight-hours. [3] Until November 2015, it accumulated more than 8 million cycles and 50 million flight hours in 20 years. [24] In July 2020, the fleet of 2,800 engines surpassed 100 million hours, powering over 1,200 aircraft for 70 operators with a dispatch reliability rate of 99.97%. [2] A complete overhaul costs more than $12 million. [25]

Records

GE90 without cowling GE90-115B.jpg
GE90 without cowling
The higher-thrust GE90-115B mounted on GE's Boeing 747 test aircraft. General Electric-747-N747GE-020918-03.jpg
The higher-thrust GE90-115B mounted on GE's Boeing 747 test aircraft.

The GE90-115B has enough thrust to fly the GE Boeing 747-100 flying testbed with the other three engines at idle, an attribute demonstrated during a flight test. [26] [27]

According to the Guinness Book of Records , at 127,900 lbf (569 kN), the engine held the record for the highest thrust achieved by an aircraft engine (the maximum thrust for the engine in service is its rated thrust 115,300 lbf (513 kN)). This thrust record was reached inadvertently as part of a one-hour, triple-red-line engine stress test using a GE90-115B development engine at GE Aviations' Peebles Test Operation, which is an outdoor test complex near Peebles, Ohio. It eclipsed the engine's previous Guinness world record of 122,965 lbf (546.98 kN). [28] On November 10, 2017, its successor, the GE9X, reached a higher record thrust of 134,300 lbf (597 kN) in Peebles, Ohio. [29]

The initial GE90 fan shaft design loads were greatly increased for operational torque and the fan blade-off condition. To accommodate the increase in fan-shaft torsional and bending stresses, a steel alloy, GE1014, not previously used in aircraft engines was required. A significantly longer fan shaft spline-coupling was required and maintaining the required high machining accuracy was challenging. [30] [31]

In October 2003, a Boeing 777-300ER broke the ETOPS record by being able to fly five and a half hours (330 minutes) with one engine shut down. [32] The aircraft, with GE90-115B engines, flew from Seattle to Taiwan as part of the ETOPS certification program.

On November 10, 2005, the GE90 entered the Guinness World Records for a second time. The GE90-110B1 powered a 777-200LR during the world's longest flight by a commercial airliner, though there were no fare-paying passengers on the flight, only journalists and invited guests. The 777-200LR flew 13,423 mi (21,602 km) in 22 hours, 22 minutes, flying from Hong Kong to London "the long way": over the Pacific, over the continental U.S., then over the Atlantic to London. [33]

Incidents

On August 11, 2004, a GE90-85B powering a Boeing 777-200ER on British Airways flight 2024 suffered an engine failure on takeoff from George Bush Intercontinental Airport, Houston. The pilots noticed a noise and vibration on takeoff but continued the rotation. At 1500 ft AGL they noticed smoke and haze in the cockpit and cabin crew advised cabin was filling with smoke. They returned to the airport for an immediate emergency landing. Findings were a stage 2 turbine blade had separated at its shank damaging the trailing blades causing the vibration. The debris was contained in the engine casing. [34]

On May 28, 2012, an Air Canada 777-300ER taking off from Toronto en route to Tokyo suffered failure of a GE90-115B at 1,500 feet (460 m) and returned safely. Engine debris was found on the ground. [35] [36]

On September 8, 2015, a GE90-85B powering a Boeing 777-236ER on British Airways Flight 2276 suffered an uncontained failure during take-off roll at Las Vegas McCarran Airport, leading to a fire. NTSB and FAA investigations were begun to determine the cause; initial findings were reported in September 2015. [37] [38]

On June 27, 2016, a GE90-115B powering a Boeing 777-300ER, on Singapore Airlines Flight 368, received an engine oil warning during flight and returned to Singapore Changi Airport. On landing the malfunctioning right engine caught fire, leading to fire damage to the engine and the wing. [39]

Transfer gearbox failures

The FAA issued an Airworthiness Directive (AD) on May 16, 2013, and sent it to owners and operators of General Electric GE90-110B1 and GE90-115B turbofan engines. This emergency AD was prompted by reports of two failures of transfer gearbox assemblies (TGBs) which resulted in in-flight shutdowns (IFSDs). Investigation revealed that the failures were caused by TGB radial gear cracking and separation. This through the combined effect of manufacturing process and operating stresses. [40] Further inspections found two additional radial gears with cracks. This condition, if not corrected, could result in additional IFSDs of one or more engines, loss of thrust control, and damage to the airplane. The Airworthiness Directive requires compliance by taking remedial measures within five days of receipt of the AD. All affected modules have been replaced. [41]

Specifications

SVGE90.jpg
A GE90-94B (Boeing 777-200ER), straight fan blades
GE90 B777-200LR.JPG
A GE90-110B1 (Boeing 777-200LR), curved fan blades
GE90 Type Certificate Data Sheet [42]
Variant-76B/-77B/-85B/-90B/-94B-110B1/-113B/-115B
TypeDual rotor, axial flow, high bypass turbofan
Compressor 1 fan, 3-stage LP, 10-stage HP1 fan, 4-stage LP, 9-stage HP [43]
Turbine 2-stage HP, 6-stage LP
Length [lower-alpha 1] 286.9  in (7.29  m )286.67 in (7.281 m)
Max. width152.4 in (3.87 m)148.38 in (3.769 m)
Max. height155.6 in (3.95 m)154.56 in (3.926 m)
Fan diameter [44] 123 in (3.1 m)128 in (3.3 m)
Weight [lower-alpha 2] 17,400  lb (7,893  kg )19,316 lb (8,762 kg)
Takeoff thrust 81,070–97,300  lbf (360.6–432.8  kN )110,760–115,540 lbf (492.7–513.9 kN) [lower-alpha 3]
LP rotor speed2,261.5 rpm2,355 rpm
HP rotor speed9,332 rpm
Bypass ratio [45] 8.4 - 99
Pressure ratio [43] 40:142:1
Thrust-to-weight ratio 5.595.98
Takeoff TSFC 0.278 lb/lbf/h (7.9 g/kN/s) [46]
Cruise TSFC0.545 lb/lbf/h (15.4 g/kN/s) (-76B) [47] (-85B) [48]
or 0.520 lb/lbf/h (14.7 g/kN/s) (-85B)
[47] [49]

Derivatives

GEnx

The GEnx engine, that has been developed for the Boeing 787 Dreamliner and 747-8, is derived from a smaller core variant of the GE90, also featuring a fan with swept rotor blades.

GP7000

GE Aviation set up a cooperative venture with Pratt & Whitney, named Engine Alliance, under which the companies have developed an engine for the Airbus A380, named GP7000, based on an 0.72 flow scale of the GE90-110B/115B core.

GE9X

In February 2012, GE announced studies on a 10% more efficient derivative, dubbed the GE9X, to power the new Boeing 777-8X/9X aircraft.

LM9000

The LM9000 is an aeroderivative gas turbine available in two options; the LM9000 without water augmentation outputting 66 MW (89,000 hp) at a 42.4% efficiency before cogeneration, and the LM9000 with water augmentation outputting 75 MW (101,000 hp) at a 42.7% efficiency before cogeneration. [50] The engine's 33:1 pressure ratio comes from a 4-stage low pressure compressor followed by a 9 stage high pressure compressor, driven by a 2 stage high pressure turbine and a 1-stage low pressure turbine, powering a 4-stage free turbine. [51]

See also

Related development

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Boeing 777</span> Wide-body, long-range, twin-engine jet airliner family

The Boeing 777, commonly referred to as the Triple Seven, is an American long-range wide-body airliner developed and manufactured by Boeing Commercial Airplanes. The 777 is the world's largest twinjet and the most-built wide-body airliner. The jetliner was designed to bridge the gap between Boeing's other wide body airplanes, the twin-engined 767 and quad-engined 747, and to replace aging DC-10 and L-1011 trijets. Developed in consultation with eight major airlines, the 777 program was launched in October 1990, with an order from United Airlines. The prototype was rolled out in April 1994, and first flew in June. The 777 entered service with the launch operator United Airlines in June 1995. Longer-range variants were launched in 2000, and first delivered in 2004.

<span class="mw-page-title-main">Turbofan</span> Airbreathing jet engine designed to provide thrust by driving a fan

A turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a combination of the preceding generation engine technology of the turbojet, and a reference to the additional fan stage added. It consists of a gas turbine engine which achieves mechanical energy from combustion, and a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

<span class="mw-page-title-main">Airbus A340</span> Type of aircraft

The Airbus A340 is a long-range, wide-body passenger airliner that was developed and produced by Airbus. In the mid-1970s, Airbus conceived several derivatives of the A300, its first airliner, and developed the A340 quadjet in parallel with the A330 twinjet. In June 1987, Airbus launched both designs with their first orders and the A340-300 took its maiden flight on 25 October 1991. It was certified along with the A340-200 on 22 December 1992 and both versions entered service in March 1993 with launch customers Lufthansa and Air France. The larger A340-500/600 were launched on 8 December 1997; the A340-600 flew for the first time on 23 April 2001 and entered service on 1 August 2002.

<span class="mw-page-title-main">Wide-body aircraft</span> Airliner with two aisles

A wide-body aircraft, also known as a twin-aisle aircraft and in the largest cases as a jumbo jet, is an airliner with a fuselage wide enough to accommodate two passenger aisles with seven or more seats abreast. The typical fuselage diameter is 5 to 6 m. In the typical wide-body economy cabin, passengers are seated seven to ten abreast, allowing a total capacity of 200 to 850 passengers. Seven-abreast aircraft typically seat 160 to 260 passengers, eight-abreast 250 to 380, nine- and ten-abreast 350 to 480. The largest wide-body aircraft are over 6 m (20 ft) wide, and can accommodate up to eleven passengers abreast in high-density configurations.

<span class="mw-page-title-main">Pratt & Whitney PW4000</span> High-bypass turbofan aircraft engine

The Pratt & Whitney PW4000 is a family of dual-spool, axial-flow, high-bypass turbofan aircraft engines produced by Pratt & Whitney as the successor to the JT9D. It was first run in April 1984, was FAA certified in July 1986, and was introduced in June 1987. With thrust ranging from 50,000 to 99,040 lbf, it is used on many wide-body aircraft.

<span class="mw-page-title-main">Rolls-Royce Trent</span> Family of turbofan aircraft engines

The Rolls-Royce Trent is a family of high-bypass turbofans produced by Rolls-Royce. It continues the three spool architecture of the RB211 with a maximum thrust ranging from 61,900 to 97,000 lbf . Launched as the RB-211-524L in June 1988, the prototype first ran in August 1990. Its first variant is the Trent 700 introduced on the Airbus A330 in March 1995, then the Trent 800 for the Boeing 777 (1996), the Trent 500 for the A340 (2002), the Trent 900 for the A380 (2007), the Trent 1000 for the Boeing 787 (2011), the Trent XWB for the A350 (2015), and the Trent 7000 for the A330neo (2018). It has also marine and industrial variants like the RR MT30.

<span class="mw-page-title-main">Engine Alliance GP7000</span> Turbofan engine manufactured by Engine Alliance

The Engine Alliance GP7000 is a turbofan jet engine manufactured by Engine Alliance, a joint venture between General Electric and Pratt & Whitney. It is one of the powerplant options available for the Airbus A380, along with the Rolls-Royce Trent 900.

<span class="mw-page-title-main">GE Aerospace</span> American aircraft engine manufacturer

General Electric Company, doing business as GE Aerospace, is an American aircraft engine supplier that is headquartered in Evendale, Ohio, outside Cincinnati. It is the legal successor to the original General Electric Company founded in 1892, which split into three separate companies between November 2021 and April 2024, adopting the trade name GE Aerospace after divesting its healthcare and energy divisions.

<span class="mw-page-title-main">General Electric F110</span> Aircraft engine

The General Electric F110 is an afterburning turbofan jet engine produced by GE Aerospace. It was derived from the General Electric F101 as an alternative engine to the Pratt & Whitney F100 for powering tactical fighter aircraft, with the F-16C Fighting Falcon and F-14A+/B Tomcat being the initial platforms; the F110 would eventually power new F-15 Eagle variants as well. The engine is also built by IHI Corporation in Japan, TUSAŞ Engine Industries (TEI) in Turkey, and Samsung Techwin in South Korea as part of licensing agreements.

<span class="mw-page-title-main">General Electric GEnx</span> Turbofan jet engine

The General Electric GEnx is an advanced dual rotor, axial flow, high-bypass turbofan jet engine in production by GE Aerospace for the Boeing 747-8 and 787. The GEnx succeeded the CF6 in GE's product line.

<span class="mw-page-title-main">General Electric CF6</span> Turbofan aircraft engine family

The General Electric CF6, US military designations F103 and F138, is a family of high-bypass turbofan engines produced by GE Aviation. Based on the TF39, the first high-power high-bypass jet engine, the CF6 powers a wide variety of civilian airliners. The basic engine core also powers the LM2500 and LM6000 marine and power generation turboshafts. It is gradually being replaced by the newer GEnx family.

<span class="mw-page-title-main">Rolls-Royce Trent 800</span> Turbofan engine produced by Rolls-Royce beginning 1993

The Rolls-Royce Trent 800 is a high-bypass turbofan produced by Rolls-Royce plc, one of the engine options for the early Boeing 777 variants. Launched in September 1991, it first ran in September 1993, was granted EASA certification on 27 January 1995, and entered service in 1996. It reached a 40% market share, ahead of the competing PW4000 and GE90, and the last Trent 800-powered 777 was delivered in 2010. The Trent 800 has the Trent family three shaft architecture, with a 280 cm (110 in) fan. With a 6.4:1 bypass ratio and an overall pressure ratio reaching 40.7:1, it generates up to 413.4 kN of thrust.

<span class="mw-page-title-main">Rolls-Royce Trent 1000</span> British turbofan engine, developed from earlier Trent series engines

The Rolls-Royce Trent 1000 is a high-bypass turbofan engine produced by Rolls-Royce, one of the two engine options for the Boeing 787 Dreamliner, competing with the General Electric GEnx. It first ran on 14 February 2006 and first flew on 18 June 2007 before a joint EASA/FAA certification on 7 August 2007 and entered service on 26 October 2011. Corrosion-related fatigue cracking of intermediate pressure (IP) turbine blades was discovered in early 2016, grounding up to 44 aircraft and costing Rolls-Royce at least £1.3 billion.

<span class="mw-page-title-main">General Electric Passport</span> High bypass turbofan aircraft engine

The General Electric Passport is a turbofan developed by GE Aerospace for large business jets. It was selected in 2010 to power the Bombardier Global 7500 and 8000, first run on June 24, 2013, and first flown in 2015. It was certified in April 2016 and powered the Global 7500 first flight on November 4, 2016, before its 2018 introduction. It produces 14,000 to 20,000 lbf of thrust, a range previously covered by the General Electric CF34. A smaller scaled CFM LEAP, it is a twin-spool axial engine with a 5.6:1 bypass ratio and a 45:1 overall pressure ratio and is noted for its large one-piece 52 in (130 cm) fan 18-blade titanium blisk.

<span class="mw-page-title-main">Rolls-Royce Trent XWB</span> Turbofan aircraft engine

The Rolls-Royce Trent XWB is a high-bypass turbofan produced by Rolls-Royce Holdings. In July 2006, the Trent XWB was selected to power exclusively the Airbus A350. The first engine was run on 14 June 2010, it first flew on an A380 testbed on 18 February 2012, it was certified in early 2013, and it first flew on an A350 on 14 June 2013. It had its first in-flight shutdown on 11 September 2018 as the fleet accumulated 2.2 million flight hours. It keeps the characteristic three-shaft layout of the Rolls-Royce Trent, with a 3.00 m (118 in) fan, an IP and HP spool. The 84,200–97,000 lbf (375–431 kN) engine has a 9.6:1 bypass ratio and a 50:1 pressure ratio. It is the most powerful member of the Trent family.

<span class="mw-page-title-main">Boeing 777X</span> Next generation of the Boeing 777

The Boeing 777X is the latest series of the long-range, wide-body, twin-engine jetliners in the Boeing 777 family from Boeing Commercial Airplanes. The 777X features new GE9X engines, new composite wings with folding wingtips, greater cabin width and seating capacity, and technologies from the Boeing 787. The 777X was launched in November 2013 with two variants: the 777-8 and the 777-9. The 777-8 provides seating for 384 passengers and has a range of 8,745 nautical miles [nmi] while the 777-9 has seating for 426 passengers and a range of over 7,285 nmi.

<span class="mw-page-title-main">General Electric GE9X</span> High-thrust turbofan jet engine

The General Electric GE9X is a high-bypass turbofan developed by GE Aerospace exclusively for the Boeing 777X. It first ran on the ground in April 2016 and first flew on March 13, 2018; it powered the 777-9's maiden flight in early 2020. It received its Federal Aviation Administration (FAA) type certificate on September 25, 2020. Derived from the General Electric GE90 with a larger fan, advanced materials like ceramic matrix composites (CMCs), and higher bypass and compression ratios, it was designed to improve fuel efficiency by 10% compared to the GE90. It is rated at 110,000 lbf (490 kN) of thrust, which is 5,000 lbf less than the GE90 highest thrust variant, the GE90-115, rated at 115,000 lbf (510 kN).

<span class="mw-page-title-main">Boeing New Midsize Airplane</span> Proposed aircraft to fill the middle of the market segment

The New Midsize Airplane (NMA), or New Midsize Aircraft, is a concept airliner proposed by Boeing to fill the middle of the market segment.

References

  1. Fan spinner to nozzle centerbody
  2. Dry, Includes basic engine, basic engine accessories, and optional equipment
  3. world record set at 127,900 lbf (569 kN) in testing 827 feet above sea level [28]

Notes

  1. Brian J. Cantwell (February 2, 2010). "The GE90 - An Introduction" (PDF). Stanford University. Archived from the original (PDF) on September 30, 2017. Retrieved February 2, 2016.
  2. 1 2 "GE90 engine surpasses 100 million hours" (Press release). GE Aviation. July 24, 2020. Archived from the original on July 28, 2020. Retrieved July 28, 2020.
  3. 1 2 "Record Year For The World's Largest, Most Powerful Jet Engine" (Press release). GE Aviation. January 19, 2012. Archived from the original on January 1, 2019. Retrieved January 1, 2019.
  4. 1 2 "The Short, Happy Life of the Prop-fan | History | Air & Space Magazine". Archived from the original on August 14, 2017. Retrieved June 16, 2017.
  5. "First Year in Service for GE90 a Huge Success" (Press release). GE Aviation. November 18, 1996. Archived from the original on December 1, 2017. Retrieved November 28, 2017.
  6. "commercial aircraft engines -GE90" (PDF). Snecma. Safran. Archived (PDF) from the original on November 7, 2016. Retrieved November 7, 2016.
  7. Scott Hamilton (December 14, 2017). "Top Airbus officials scoffed at Leahy's 50% market share goal". Leeham. Archived from the original on November 29, 2018. Retrieved December 14, 2017.
  8. 1 2 3 "A question of choice". Flight International. January 3, 2000. Archived from the original on April 14, 2009. Retrieved March 29, 2009.
  9. "Aero-Engines – Rolls-Royce Trent". Jane's Transport Business News . February 13, 2001. Archived from the original on March 25, 2008. Retrieved March 21, 2009.
  10. "Full GE90 tests get under way". Flight Global. Archived from the original on February 12, 2022. Retrieved May 26, 2020.
  11. "The GE90:ge aviations greatest comeback story". GE Aviation. December 2, 2019. Archived from the original on February 6, 2020. Retrieved February 12, 2020.
  12. Dominic Gates (January 4, 2019). "The biggest jet engines ever seen are set to roar on Boeing's 777X". The Seattle Times. Archived from the original on January 4, 2019. Retrieved January 4, 2019.
  13. The Museum of Modern Art (2007). "Jet engine fan blade (model GE90-115B)". In Roberts, Rebecca (ed.). MoMA highlights since 1980: 250 works from the Museum of Modern Art, New York. p. 175. ISBN   978-0-87070-713-1. OCLC   191091211 . Retrieved October 18, 2022.
  14. 1 2 3 "GE90 secures exclusive position on 777X". Flight Global. July 14, 1999. Archived from the original on August 18, 2016. Retrieved August 1, 2016.
  15. Eden, Paul, ed. (2008). Civil Aircraft Today: The World's Most Successful Commercial Aircraft. London: Amber Books Ltd. p. 115. ISBN   978-1-84509-324-2.
  16. Norris, Guy; Mark Wagner (1999). Modern Boeing Jetliners. Minneapolis, Minnesota: Zenith Imprint. pp. 143–144. ISBN   0-7603-0717-2.
  17. 1 2 "How Ge Locked Up That Boeing Order". Bloomberg. August 9, 1999. Archived from the original on September 12, 2017. Retrieved March 7, 2017.
  18. "GE90-115B: GE's Best-Ever New Jet Engine Entry Into Airline Service" (Press release). GE Aviation. July 17, 2006. Archived from the original on December 26, 2019. Retrieved December 26, 2019.
  19. "Airbus A350 XWB puts pressure on Boeing 777". flightglobal. November 26, 2007. Archived from the original on March 8, 2016. Retrieved June 16, 2017.
  20. Ben Kingsley-Jones; Guy Norris (November 29, 2005). "Enhanced A340 to take on 777". Flight International. Archived from the original on March 7, 2016. Retrieved June 16, 2017.
  21. Jens Flottau (November 14, 2011). "Airbus Bids Adieu to A340, Postpones A350 Delivery". Aviation Week & Space Technology. Archived from the original on May 14, 2016. Retrieved August 12, 2014.
  22. "GE strives to identify Air France engine fault". Flight International . January 3, 2006. Archived from the original on June 13, 2017. Retrieved November 7, 2016.
  23. "The FAA Cleared The First 3D Printed Part To Fly In A Commercial Jet Engine From GE". GE reports. GE Aviation. April 14, 2015. Archived from the original on June 29, 2017. Retrieved April 22, 2015.
  24. "Etihad Airways signs engine agreements with GE for Boeing 777 Freighters" (Press release). GE Aviation. November 10, 2015. Archived from the original on August 7, 2016. Retrieved July 21, 2016.
  25. Scott Hamilton (November 8, 2021). "Pontifications: As customers wait for 787s, some rethink 777-300ERs". Leeham News. Archived from the original on November 10, 2021. Retrieved November 10, 2021.
  26. General Electric Biggest Jet Engine for B-777. History Channel. 2008. Event occurs at 3:00–3:10 min. Archived from the original on December 12, 2021. Retrieved July 11, 2013.
  27. "GE90-115B certification: a look at the flight tests". Le Webmag. Safran. August 8, 2003. Archived from the original on November 1, 2006.
  28. 1 2 "GE90 Sets New World Record For Thrust; Engine Completes FAR 33 Certification Tests" (Press release). GE Aviation. February 5, 2003. Archived from the original on June 14, 2011. Retrieved April 14, 2011.
  29. "GE9X Breaks GUINNESS WORLD RECORDS™ Title for Thrust" (Press release). GE Aviation. July 12, 2019.[ permanent dead link ]
  30. Development of GE90-115B Turbofan Engine,Horibe et al., IHI Engineering Review,Vol.37 No.1 February 2004,p.6
  31. "Impressive Progress of GE90-115B Engine Continues" (Press release). GE Aviation. July 24, 2000. Archived from the original on March 6, 2009. Retrieved December 19, 2008.
  32. "Boeing 777-300ER Performs 330-Minute ETOPS Flight" (Press release). Boeing. October 15, 2003. Archived from the original on November 4, 2016. Retrieved November 3, 2016.
  33. "Flight-distance record awaits as big 777 heads to London". Seattle Post-Intelligencer . November 8, 2005. Archived from the original on October 21, 2016. Retrieved November 7, 2016.
  34. url= https://www.ntsb.gov/_layouts/ntsb.aviation/brief2.aspx?ev_id=20041015X01640&ntsbno=DCA04IA066&akey=1 Archived April 28, 2018, at the Wayback Machine
  35. "Maintenance inspection a factor in 2012 Air Canada engine failure during take-off from Lester B. Pearson International Airport". Transportation Safety Board of Canada. December 13, 2013. Archived from the original on October 19, 2015. Retrieved September 11, 2015.
  36. Edmiston, Jake (May 29, 2012). "Air Canada plane debris struck cars after engine failure, safety board confirms". National Post. Archived from the original on February 12, 2022. Retrieved November 7, 2016.
  37. Charles Alcock (September 8, 2015). "Engine Failure Causes Fire on British Airways Boeing 777". Aviation International News. Archived from the original on May 28, 2020. Retrieved September 9, 2015.
  38. "NTSB Issues Update on the British Airways Engine Fire at Las Vegas". NTSB. September 8, 2015. Archived from the original on September 12, 2015. Retrieved August 8, 2015.
  39. "Fire damage apparent on SIA 777 wing". Flight Global. June 27, 2016. Archived from the original on September 20, 2019. Retrieved November 7, 2016.
  40. M Scarfo, Jean-Pierre. "National Transportation Safety Board Aviation Incident Final Report" (PDF). Skybrary. National Transportation Safety Board. Retrieved November 19, 2022.
  41. "Emergency airworthiness directive (AD) 2013-10-52" (PDF). FAA. May 16, 2013. sent to owners and operators of General Electric Company (GE) GE90-110B1 and GE90-115B turbofan engines. Archived from the original (PDF) on November 7, 2016. Retrieved November 7, 2016.
  42. "Type Certificate Data Sheet E00049EN" (PDF). FAA. June 23, 2016. Archived from the original (PDF) on February 9, 2020. Retrieved November 7, 2016.
  43. 1 2 "GE90 Commercial Aircraft Engine". GE Aviation. Archived from the original on March 29, 2016. Retrieved March 28, 2016.
  44. "GE90-115B Fan Completing Blade Testing; On Schedule For First Engine To Test" (Press release). GE Aviation. June 17, 2001. Archived from the original on January 1, 2019. Retrieved January 1, 2019.
  45. "commercial aircraft engines -GE90" (PDF). Snecma. Safran. Archived (PDF) from the original on November 7, 2016. Retrieved November 7, 2016.
  46. "Engine Directory Part 1 - Turbofans". Flight International. November 14, 2000. Archived from the original on February 16, 2019. Retrieved February 16, 2019.
  47. 1 2 Kumar, Parth; Khalid, Adeel (2017). "Blended Wing Body Propulsion System Design". International Journal of Aviation, Aeronautics, and Aerospace. 4 (4): 28. doi: 10.15394/ijaaa.2017.1187 . ISSN   2374-6793. Archived from the original on June 3, 2021. Retrieved July 10, 2021.
  48. Lloyd R. Jenkinson & al. (July 30, 1999). "Civil Jet Aircraft Design: Engine Data File". Elsevier/Butterworth-Heinemann. Archived from the original on May 6, 2021. Retrieved February 16, 2019.
  49. Sahai, Abhishek Kumar (June 24, 2016). Consideration of Aircraft Noise Annoyance during Conceptual Aircraft Design (PDF) (Thesis). Table 5.2: Comparison of key Gasturb simulated and reference values for the GE90-85B engine. Archived (PDF) from the original on June 2, 2021. Retrieved May 30, 2021.
  50. "LM9000". General Electric. Archived from the original on July 2, 2018. Retrieved July 2, 2018.
  51. "LM9000 - The new prime mover for oil and gas" (PDF). General Electric. 2017. Archived (PDF) from the original on July 2, 2018. Retrieved June 30, 2017.