ETOPS

Last updated • 14 min readFrom Wikipedia, The Free Encyclopedia
The difference between an ETOPS-enabled shorter flight path (the solid green line) and a flight path for non-ETOPS aeroplane (the dashed blue line), the last one is curved due to the required distance to alternates ETOPS rating flight path.svg
The difference between an ETOPS-enabled shorter flight path (the solid green line) and a flight path for non-ETOPS aeroplane (the dashed blue line), the last one is curved due to the required distance to alternates

The Extended-range Twin-engine Operations Performance Standards (ETOPS) ( /ˈtɒps/ ) are safety standards set by the International Civil Aviation Organization (ICAO) for twin-engine commercial passenger aircraft operations. They are a safety measure intended to ensure that in the event of a single engine failure, an aircraft will still be able to reach a diversion airport using the remaining operational engine. This may be at a reduced speed and/or height, and usually applies to flights over water or remote lands, typically routes previously restricted to three- and four-engine aircraft. [1] :page9

Contents

History

In 1936, the predecessor to the Federal Aviation Administration (FAA), the U.S. Bureau of Air Commerce, restricted commercial operations within United States airspace to within 100 mi (160 km) of an adequate airport. For many aircraft of that era this meant about 60 minutes with one engine inoperative. [1] :page10

In 1953, with piston engine reliability and aircraft performance improved, U.S. authorities introduced a "60-minute rule", restricting twin-engine aircraft to a 60-minute diversion area (at single-engine cruise speed). There was some additional flexibility beyond this limit with special approval. Meanwhile the International Civil Aviation Organization (ICAO) recommended a 90-minute diversion time for all aircraft, which was adopted by many regulatory authorities and airlines outside the US. [1] :page10

During the 1950s, Pan Am twin-engine Convair 240s flew across the Caribbean from Barranquilla, Colombia to Kingston, Jamaica, Avensa Convair 340s flew from Maracaibo, Venezuela to Montego Bay, Jamaica, KLM Douglas DC-3s flew Curacao to Ciudad Trujillo while KLM Convairs flew Aruba to Kingston with Delta Air Lines operating Convair 340 flights nonstop between New Orleans and Havana as well as nonstop between Havana and Montego Bay and also on a routing of Havana – Port au Prince – Ciudad Trujillo – San Juan, Puerto Rico.[ further explanation needed ] [2] In 1948–52 New Zealand National Airways Corporation scheduled a DC-3 to fly from Apia (Western Samoa) to Aitutaki, a 5+12-hour flight covering 685 airportless nautical miles between Tafuna (Pago Pago) and Aitutaki. In 1963 Polynesian Airlines started flying a Percival Prince Apia to Aitutaki; in 1964 the flight was a DC-3 from Faleolo (Upolu) to Aitutaki, a distance of 768 nautical miles (1,422 km; 884 mi). More recently, the January 1979 OAG showed a weekly Polynesian Airlines HS748 from Niue to Rarotonga, 585 nmi (1,083 km; 673 mi) with no airport.

In 2017 ICAO issued Standards and Recommended Practices (SARPS) for ETOPS, and ETOPS were extended to four-engine aircraft like the Boeing 747-8 and the terminology updated to EDTO (Extended Diversion Time Operations). [3]

Early jet airliners

While the earliest jet engines were sometimes unreliable, widespread use of later engines such as the Pratt & Whitney JT8D (e.g. McDonnell Douglas DC-9 and Boeing 737) led to major advances in reliability and safety. As jet engines started to deliver more power than piston engines while increasing reliability, aircraft whose size previously required four piston engines could now be built using only two jet engines. [1] :page11

By the late 1960s, most large civil airliners were jet-powered, relegating the piston engine to roles such as cargo flights. With the JT8D reliably powering the three-engine Boeing 727, the 60-minute rule was waived in 1964 for three-engine aircraft, which in turn opened the way for the development of wide-body, intercontinental trijets such as the Lockheed L-1011 TriStar and McDonnell Douglas DC-10. By then, only twin-engine jets were restricted by the 60-minute rule. Trijets and quadjets dominated international long-haul flights until the late 1980s.

Early ETOPS

The Airbus A300B4 became the first ETOPS-compliant aircraft, in 1977 Airbus A300B2-103 - Airbus Industrie.jpg
The Airbus A300B4 became the first ETOPS-compliant aircraft, in 1977

Airbus A300 twinjets, the first twin-engine wide-body aircraft, had been flying across the North Atlantic, the Bay of Bengal, and the Indian Ocean under a 90-minute ICAO rule since 1976. [1] :page14

When the FAA director J. Lynn Helms in 1980 was approached about the possibility of an exemption, his response was "It'll be a cold day in hell before I let twins fly long haul, overwater routes." [5] [6] The Boeing 767-200ER entered service in 1984.

In 1985, the FAA increased the ETOPS to 120 minutes at the single-engine cruise speed. [1] :page12 Trans World Airlines operated the first 120-minute ETOPS (ETOPS-120) service on February 1, 1985, with a Boeing 767-200 from Boston to Paris. The 767 burned 7,000 lb (3.2 t) less fuel per hour than a Lockheed L-1011 TriStar on the same route, prompting TWA to spend $2.6 million on each 767 they owned to retrofit them to ETOPS-120 specs. [7] It was followed by Singapore Airlines in June with an Airbus A310. In April 1986, Pan Am inaugurated transatlantic revenue service using A310s, and within five years Airbus ETOPS operators numbered more than 20. [1] :page14

ETOPS 180

Twin-engine Boeing 767-300ER over Alaska beginning an ETOPS 180 trans-Pacific crossing Air Canada Boeing 767-300ER with CF6-80 engines.jpg
Twin-engine Boeing 767-300ER over Alaska beginning an ETOPS 180 trans-Pacific crossing

In 1988, the FAA amended the ETOPS regulation to allow the extension to a 180-minute diversion period, subject to stringent technical and operational qualifications. ETOPS-180 and ETOPS-207 cover about 95% of the Earth. [8] The first such flight was conducted in 1989. This set of regulations was subsequently adopted by the JAA, ICAO, and other regulatory bodies.

ETOPS 180 at introduction

The Boeing 777 was the first ETOPS 180 airliner at its introduction Boeing 777 in then-Boeing livery K58552.jpg
The Boeing 777 was the first ETOPS 180 airliner at its introduction

The original 1985 regulations allowed an airliner to have ETOPS-120 rating on entry into service. ETOPS-180 was only possible after one year of trouble-free 120-minute ETOPS experience. In 1990 Boeing convinced the FAA that it could deliver an airliner with ETOPS-180 on its entry into service. This process was called Early ETOPS. The Boeing 777 was the first aircraft to be introduced with an ETOPS rating of 180 minutes.

In the 1990s, the Joint Aviation Authorities (JAA) demurred; on its entry into service in Europe, the Boeing 777 was rated ETOPS-120. European airlines operating the 777 had to demonstrate one year of trouble-free 120-minute ETOPS experience before obtaining 180-minute ETOPS for the 777.

Beyond ETOPS-180

Effective February 15, 2007, the FAA ruled that US-registered twin-engine airplane operators can fly more than 180-minute ETOPS to the design limit of the aircraft. In November 2009, the Airbus A330 became the first aircraft to receive ETOPS-240 approval, which has since been offered by Airbus as an option. [9]

ETOPS-240 and beyond are now permitted [10] on a case-by-case basis, with regulatory bodies in the United States, Australia, and New Zealand adopting said regulatory extension. Authority is only granted to operators of two-engine airplanes between specific city pairs. The certificate holder must have been operating at 180-minute or greater ETOPS authority for at least 24 consecutive months, of which at least 12 consecutive months must be at 240-minute ETOPS authority with the airplane-engine combination in the application.

In 2009 the Airbus A330 was first to receive ETOPS-240 approval AIB A330 F-WWCB 18jun14 LFBO.jpg
In 2009 the Airbus A330 was first to receive ETOPS-240 approval

On December 12, 2011, Boeing received type-design approval from the FAA for up to 330-minute extended operations for its Boeing 777 series, all equipped with GE engines, and with Rolls-Royce and Pratt & Whitney engines expected to follow. [11] The first ETOPS-330 flight took place on December 1, 2015, with Air New Zealand connecting Auckland to Buenos Aires on a 777-200ER. [12] On May 28, 2014, the Boeing 787 received its ETOPS-330 certificate from the FAA, enabling LAN Airlines (now known as LATAM Airlines) to switch to the 787 from the A340 on their Santiago–Auckland–Sydney service a year later. [13] Until the rule change in North America and Oceania, several commercial airline routes were still economically off-limits to twinjets because of ETOPS regulations, unless the route was specifically conducted as indivertible. There were routes traversing the Southern hemisphere, e.g., South Pacific (e.g., SydneySantiago, one of the longest over-the-sea distances flown by a commercial airline), South Atlantic (e.g., JohannesburgSão Paulo), Southern Indian Ocean (e.g., PerthJohannesburg), and Antarctica.

Before the introduction of the Airbus A350XWB in 2014, regulations in North America and Europe permitted up to 180-minute ETOPS at entry. The A350 XWB was first to receive an ETOPS-370 prior to entry into service by European authorities, [14] enabling economical nonstop routes between Europe and Oceania (and thereby bypassing historical stopovers across Asia and North America) by the late 2010s and early 2020s. This includes the high-demand London–Sydney route, in the latest development for ultra long-haul flights. The A350 XWB's current ETOPS certification covers 99.7% of the Earth's entire surface, allowing point-to-point travel anywhere in the world except directly over the South Pole.[ citation needed ]

Meanwhile, the first time that ETOPS-330 approval was given to a four-engine aircraft was in February 2015, to the Boeing 747-8 Intercontinental. [15] It is the only ETOPS-compliant aircraft allowed to run non-stop overflights over Antarctica with proper alternates, alongside the Airbus A340 and A380.[ citation needed ]

Usage

The North Atlantic Tracks are the most heavily used oceanic routes in the world, and are largely covered by ETOPS 120-minute rules, thereby removing the necessity of using 180-minute rules. However, North Atlantic diversion airports are subject to adverse weather conditions that affect their availability for use. As a result, the JAA and FAA have given 15% extension to the 120-minute rules to deal with such contingencies, resulting to ETOPS-138 (i.e. 138 minutes) to allow ETOPS flights with such airports closed. By the mid-2010s, virtually all North Atlantic plane routes were dominated by twin-engine aircraft.

During the Cold War, routes between Europe and East Asia were prohibited from flying over Soviet Union or China since both airspaces were previously heavily military-controlled. Virtually all flights between Europe and North East Asia flew over the United States, often with a tank stop in Anchorage, Alaska. They flew near the North Pole with a very large distance to usable airports, for which only three- and four-engine wide-body aircraft were permitted for safety reasons by international aviation authorities. Some flights between Europe and Oceania still largely pass through stopovers in Asia (either in the Middle East or Southeast Asia) or North America (either in Canada or the U.S.) given the current aircraft range restrictions and, in the case of the early 2020s, the reinstatement of selected routes by airlines between the Western Hemisphere and Eastern Hemisphere bypassing Russia due to its ongoing war with Ukraine.

For decades, narrow-body aircraft like the Airbus A320 series, and the Boeing 737 series and 757 have continuously operated flights as approved for ETOPS operation, alongside earlier wide-body aircraft such as the A300 and A310, and Boeing 767. The success of ETOPS aircraft like A300 and Boeing 767 made the intercontinental trijets obsolete for passenger use, production of which was largely ended by the late 2000s with Boeing cancelling the McDonnell Douglas MD-11 program in the same period.

The rules have also allowed American legacy carriers (United Airlines and Delta Air Lines in particular) to use the Boeing 757 on "long and thin" transatlantic routes between their major hubs and secondary European cities [16] that cannot generate the passenger demand to justify the use of a widebody airliner. The practice has been controversial, because although the 757 has adequate range to cross the Atlantic Ocean comfortably, strong headwinds caused by the jetstream over the winter months can result in westbound flights being declared "minimum fuel", forcing a refuelling stop at Gander, Newfoundland, in order to safely complete their journey. [17]

Aloha Airlines operated 180-minute ETOPS–approved Boeing 737-700 aircraft on nonstop routes between the Hawaiian Islands and the western U.S. and also Vancouver, Canada. The use of the smaller 737-700 enabled Aloha to serve routes that could not support larger jet aircraft with an example being the HonoluluBurbank nonstop route. Prior to the 737-700 operation, Aloha Airlines had operated 737-200 aircraft to various Pacific islands utilizing 120 minute ETOPS.

Other new-generation ETOPS aircraft include the Airbus A220 series, the Embraer E-Jets series and the ATR 72. By the mid-2010s, the widespread successes of ETOPS-reliant narrow-body aircraft have diminished the global market share of double-deck wide-body jets. At the onset of the COVID-19 pandemic in the early 2020s, Boeing and Airbus have since ended all production of the 747 and A380, respectively (and both being the two largest commercial aircraft in the world). At the same time, the increasing prominence of new-generation ultra-long-range wide-body twinjets like the Boeing 777 and 787, and Airbus A330 and A350 over the last decade has shifted the favor from quadjets to twinjets for international long-haul travel.

Approval process

The cornerstone of the ETOPS approach is the statistics showing that the turbine assembly of a modern jet engine is an inherently reliable component. Engine ancillaries, by contrast, have a lower reliability rating. Therefore, an ETOPS-certified engine may be built with duplicate sets of certain ancillaries in order to receive the required reliability rating.

ETOPS approval is a two-step process. First, the airframe and engine combination must satisfy the basic ETOPS requirements during its type certification. This is called "ETOPS type approval". Such tests may include shutting down an engine and flying the remaining engine during the complete diversion time. Often such tests are performed in the middle of the ocean. It must be demonstrated that, during the diversion flight, the flight crew is not unduly burdened by extra workload due to the lost engine and that the probability of the remaining engine failing is extremely remote. For example, if an aircraft is rated for ETOPS-180, it means that it is able to fly with full load and just one engine for three hours.

Second, an operator who conducts ETOPS flights must satisfy their own country's aviation regulators about their ability to conduct ETOPS flights. This is called "ETOPS operational certification" and involves compliance with additional special engineering and flight crew procedures in addition to the normal engineering and flight procedures. Pilots and engineering staff must be qualified and trained for ETOPS. An airline with extensive experience operating long distance flights may be awarded ETOPS operational approval immediately, while others may need to demonstrate ability through a series of ETOPS proving flights.

Regulators closely watch the ETOPS performance of both type certificate holders and their affiliated airlines. Any technical incidents during an ETOPS flight must be recorded. From the data collected, the reliability of the particular airframe-engine combination is measured and statistics published. The figures must be within limits of type certifications. Of course, the figures required for ETOPS-180 will always be more stringent than ETOPS-120. Unsatisfactory figures would lead to a downgrade or, worse, suspension of ETOPS capabilities either for the type certificate holder or the airline.

Engines must have an in-flight shutdown (IFSD) rate better than 1 per 20,000 hours for ETOPS-120, 1 per 50,000 hours for ETOPS-180, and 1 per 100,000 hours for beyond ETOPS-180. [18]

Private jets are exempted from ETOPS by the FAA, but are subject to the ETOPS 120-minute rule in EASA's jurisdiction. [19]

Government-owned aircraft (including military) do not have to adhere to ETOPS regulations.[ citation needed ]

Ratings

There are different levels of ETOPS certification, each allowing aircraft to fly on routes that are a certain amount of single-engine flying time away from the nearest suitable airport. For example, if an aircraft is certified for 180 minutes, it is permitted to fly any route not more than 180 minutes' single-engine flying time to the nearest suitable airport.

The following ratings are awarded under current regulations according to the capability of the airliner:

However, ratings for ETOPS type approval are fewer. They are:

Designation

Until the mid-1980s, the term EROPS (extended range operations) was used before being superseded by ETOPS usage. In 1997, when Boeing proposed to extend ETOPS authority for twins to beyond 180 minutes, Airbus proposed to replace ETOPS by a newer system, referred to as Long Range Operational Performance Standards (LROPS), which would affect all civil airliners, not just those with a twin-engine configuration with more than 180 minutes ETOPS.

US FAA

The FAA stated in the Federal Register in 2007:

This final rule applies to air carrier (part 121), commuter, and on-demand (part 135) turbine powered multi-engine airplanes used in extended-range operations. However, all-cargo operations in airplanes with more than two engines of both part 121 and part 135 are exempted from the majority of this rule. Today's rule [January 16, 2007] establishes regulations governing the design, operation and maintenance of certain airplanes operated on flights that fly long distances from an adequate airport. This final rule codifies current FAA policy, industry best practices and recommendations, as well as international standards designed to ensure long-range flights will continue to operate safely." [20]

and

Several commenters … recommended use of the acronym "LROPS"—meaning 'Long Range Operations'—for three- and four-engine ETOPS, to avoid confusion, particularly for those operations beyond 180 minutes' diversion time. The FAA has decided to use the single term, 'extended operations,' or ETOPS, for all affected operations regardless of the number of engines on the airplane." [21]

Prior to 2007, the FAA used the term for Extended Range Operation with Two-Engine Airplanes but the meaning was changed when regulations were broadened to include aircraft with more than two engines. [22]

EDTO – Extended Diversion Time Operations

In 2017 ICAO amendment 36 to Part I of Annex 6 of the Chicago Convention replaced the term ETOPS with the new term EDTO (Extended Diversion Time Operations). The main reason of this change in the terminology was to better reflect the scope and applicability of these new standards. [3]

Backronym

A colloquial aviation backronym is "Engines Turn Or Passengers Swim", referring to the inevitable emergency water landing of a twin engine aircraft after a double engine failure over water outside gliding range of land. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Boeing 767</span> Wide-body twin-engine jet airliner family

The Boeing 767 is an American wide-body airliner developed and manufactured by Boeing Commercial Airplanes. The aircraft was launched as the 7X7 program on July 14, 1978, the prototype first flew on September 26, 1981, and it was certified on July 30, 1982. The initial 767-200 variant entered service on September 8, 1982, with United Airlines, and the extended-range 767-200ER in 1984. It was stretched into the 767-300 in October 1986, followed by the extended-range 767-300ER in 1988, the most popular variant. The 767-300F, a production freighter version, debuted in October 1995. It was stretched again into the 767-400ER from September 2000.

<span class="mw-page-title-main">Boeing 777</span> Wide-body, long-range, twin-engine jet airliner family

The Boeing 777, commonly referred to as the Triple Seven, is an American long-range wide-body airliner developed and manufactured by Boeing Commercial Airplanes. The 777 is the world's largest twinjet and the most-built wide-body airliner. The jetliner was designed to bridge the gap between Boeing's other wide body airplanes, the twin-engined 767 and quad-engined 747, and to replace aging DC-10 and L-1011 trijets. Developed in consultation with eight major airlines, the 777 program was launched in October 1990, with an order from United Airlines. The prototype aircraft rolled out in April 1994, and first flew in June of that year. The 777 entered service with the launch operator United Airlines in June 1995. Longer-range variants were launched in 2000, and first delivered in 2004.

<span class="mw-page-title-main">Boeing 757</span> Airliner family by Boeing

The Boeing 757 is an American narrow-body airliner designed and built by Boeing Commercial Airplanes. The then-named 7N7, a twinjet successor for the trijet 727, received its first orders in August 1978. The prototype completed its maiden flight on February 19, 1982, and it was FAA certified on December 21, 1982. Eastern Air Lines placed the initial 757-200 variant in commercial service on January 1, 1983. A package freighter (PF) variant entered service in September 1987 and a combi model in September 1988. The stretched 757-300 was launched in September 1996 and began service in March 1999. After 1,050 had been built for 54 customers, production ended in October 2004, while Boeing offered the largest 737 NG variants as a successor to the -200.

<span class="mw-page-title-main">Airbus A340</span> Aircraft

The Airbus A340 is a long-range, wide-body passenger airliner that was developed and produced by Airbus. In the mid-1970s, Airbus conceived several derivatives of the A300, its first airliner, and developed the A340 quadjet in parallel with the A330 twinjet. In June 1987, Airbus launched both designs with their first orders and the A340-300 took its maiden flight on 25 October 1991. It was certified along with the A340-200 on 22 December 1992 and both versions entered service in March 1993 with launch customers Lufthansa and Air France. The larger A340-500/600 were launched on 8 December 1997; the A340-600 flew for the first time on 23 April 2001 and entered service on 1 August 2002.

<span class="mw-page-title-main">Airbus A330</span> Wide-body twin-engine jet airliner

The Airbus A330 is a wide-body aircraft developed and produced by Airbus. Airbus began developing larger A300 derivatives in the mid-1970s, giving rise to the A330 twinjet as well as the A340 quadjet, and launched both designs along with their first orders in June 1987. The A330-300, the first variant, took its maiden flight in November 1992 and entered service with Air Inter in January 1994. The slightly shorter A330-200 variant followed in 1998 with Canada 3000 as the launch operator.

<span class="mw-page-title-main">Wide-body aircraft</span> Airliner with two aisles

A wide-body aircraft, also known as a twin-aisle aircraft and in the largest cases as a jumbo jet, is an airliner with a fuselage wide enough to accommodate two passenger aisles with seven or more seats abreast. The typical fuselage diameter is 5 to 6 m. In the typical wide-body economy cabin, passengers are seated seven to ten abreast, allowing a total capacity of 200 to 850 passengers. Seven-abreast aircraft typically seat 160 to 260 passengers, eight-abreast 250 to 380, nine- and ten-abreast 350 to 480. The largest wide-body aircraft are over 6 m (20 ft) wide, and can accommodate up to eleven passengers abreast in high-density configurations.

<span class="mw-page-title-main">Jet airliner</span> Passenger aircraft powered by jet engines

A jet airliner or jetliner is an airliner powered by jet engines. Airliners usually have two or four jet engines; three-engined designs were popular in the 1970s but are less common today. Airliners are commonly classified as either the large wide-body aircraft, medium narrow-body aircraft and smaller regional jet.

<span class="mw-page-title-main">Boeing 787 Dreamliner</span> Boeing wide-body jet airliner introduced in 2011

The Boeing 787 Dreamliner is an American wide-body airliner developed and manufactured by Boeing Commercial Airplanes. After dropping its unconventional Sonic Cruiser project, Boeing announced the conventional 7E7 on January 29, 2003, which focused largely on efficiency. The program was launched on April 26, 2004, with an order for 50 aircraft from All Nippon Airways (ANA), targeting a 2008 introduction. On July 8, 2007, a prototype 787 without major operating systems was rolled out; subsequently the aircraft experienced multiple delays, until its maiden flight on December 15, 2009. Type certification was received in August 2011, and the first 787-8 was delivered in September 2011 before entering commercial service on October 26, 2011, with ANA.

<span class="mw-page-title-main">Pratt & Whitney PW4000</span> High-bypass turbofan aircraft engine

The Pratt & Whitney PW4000 is a family of dual-spool, axial-flow, high-bypass turbofan aircraft engines produced by Pratt & Whitney as the successor to the JT9D. It was first run in April 1984, was FAA certified in July 1986, and was introduced in June 1987. With thrust ranging from 50,000 to 99,040 lbf, it is used on many wide-body aircraft.

<span class="mw-page-title-main">General Electric GE90</span> High-bypass turbofan aircraft engine

The General Electric GE90 is a family of high-bypass turbofan aircraft engines built by GE Aerospace for the Boeing 777, with thrust ratings from 81,000 to 115,000 pounds-force. It entered service with British Airways in November 1995. It is one of three options for the 777-200, -200ER, and -300 versions, and the exclusive engine of the -200LR, -300ER, and 777F. It was the largest jet engine, until being surpassed in January 2020 by its successor, the 110,000 lbf (490 kN) GE9X, which has a larger fan diameter by 6 inches (15 cm). However, the GE90-115B, the most recent variant of the GE90, is rated for a higher thrust than the GE9X.

<span class="mw-page-title-main">Boeing Commercial Airplanes</span> Division of the Boeing Company that builds commercial jet airplanes

Boeing Commercial Airplanes (BCA) is a division of the Boeing Company. It designs, assembles, markets, and sells commercial aircraft, including the 737, 767, 777, and 787, along with freighter and business jet variants of most. The division employs nearly 35,000 people, many working at the company's division headquarters in Renton, Washington or at more than a dozen engineering, manufacturing, and assembly facilities, notably the Everett Factory and Renton Factory, and the South Carolina Factory.

<span class="mw-page-title-main">Trijet</span> Aircraft propelled by three jet engines

A trijet is a jet aircraft powered by three jet engines. In general, passenger airline trijets are considered to be second-generation jet airliners, due to their innovative engine locations, in addition to the advancement of turbofan technology. Trijets are more efficient than quadjets, but not as efficient as twinjets, which replaced trijets as larger and more reliable turbofan engines became available.

<span class="mw-page-title-main">Twinjet</span> Jet aircraft powered by two engines

A twinjet or twin-engine jet is a jet aircraft powered by two engines. A twinjet is able to fly well enough to land with a single working engine, making it safer than a single-engine aircraft in the event of failure of an engine. Fuel efficiency of a twinjet is better than that of aircraft with more engines. These considerations have led to the widespread use of aircraft of all types with twin engines, including airliners, fixed-wing military aircraft, and others.

<span class="mw-page-title-main">Aircraft maintenance</span> Performance of tasks which maintain an aircrafts airworthiness

Aircraft maintenance is the performance of tasks required to ensure the continuing airworthiness of an aircraft or aircraft part, including overhaul, inspection, replacement, defect rectification, and the embodiment of modifications, compliance with airworthiness directives and repair.

<span class="mw-page-title-main">Turbine engine failure</span> Turbine engine unexpectedly stops producing power due to a malfunction other than fuel exhaustion

A turbine engine failure occurs when a turbine engine unexpectedly stops producing power due to a malfunction other than fuel exhaustion. It often applies for aircraft, but other turbine engines can fail, like ground-based turbines used in power plants or combined diesel and gas vessels and vehicles.

A polar route is an aircraft route across the uninhabited polar ice cap regions. The term "polar route" was originally applied to great circle navigation routes between Europe and the west coast of North America in the 1950s.

<span class="mw-page-title-main">Boeing 777X</span> Next generation of the Boeing 777

The Boeing 777X is the latest series of the long-range, wide-body, twin-engine jetliners in the Boeing 777 family from Boeing Commercial Airplanes. The 777X features new GE9X engines, new composite wings with folding wingtips, greater cabin width and seating capacity, and technologies from the Boeing 787. The 777X was launched in November 2013 with two variants: the 777-8 and the 777-9. The 777-8 provides seating for 384 passengers and has a range of 8,745 nautical miles [nmi] while the 777-9 has seating for 426 passengers and a range of over 7,285 nmi.

<span class="mw-page-title-main">Four-engined jet aircraft</span>

A four-engined jet, sometimes called a quadjet, is a jet aircraft powered by four engines. The presence of four engines offers increased power and redundancy, allowing such aircraft to be used as airliners, freighters, and military aircraft. Many of the first purpose-built jet airliners had four engines, among which stands the De Havilland Comet, the world's first commercial jetliner. In the decades following their introduction, their use has gradually declined due to a variety of factors, including the approval of twin-engine jets to fly farther from diversion airports as reliability increased, and an increased emphasis on fuel efficiency.

<span class="mw-page-title-main">B-HNL</span> Prototype of the Boeing 777

B-HNL is a Boeing 777 aircraft that was built by Boeing Commercial Airplanes as the prototype of the 777. It had rolled off the assembly line, originally registered as N7771, on 9 April 1994 and first flew on 12 June. It then spent 11 months of its time with other prototype aircraft for testing and certification and on 19 April 1995, the aircraft type was certified by the Federal Aviation Administration (FAA) and the European Joint Aviation Authorities (JAA) with United Airlines being its launch customer. Boeing then delivered the aircraft to Cathay Pacific, re-registering to B-HNL, in the year 2000 and was retired 18 years later, having its last flight on 18 September 2018 to Pima Air & Space Museum for aircraft display. The Boeing 777 was the world's largest twin-engine jet and also the first and one of two Boeing aircraft to feature the fly-by-wire system, the second aircraft being the Boeing 787 Dreamliner.

References

  1. 1 2 3 4 5 6 7 Getting to Grips with ETOPS (PDF) (Issue V ed.). Airbus. October 1998.
  2. Time Table Images
  3. 1 2 "ICAO DOC 10085" (PDF).
  4. "Technology leaders (1977–1979)". Aircraft History. Airbus.
  5. "The Boeing 767 and the Birth of ETOPS". Tails though Time. Archived from the original on August 11, 2017. Retrieved 17 February 2018.
  6. 1 2 DeSantis, J. Angelo (2013). "Engines Turn or Passengers Swim: A Case Study of How ETOPS Improved Safety and Economics in Aviation". Journal of Air Law & Commerce . 77 (2013): 20.
  7. Karl L. Swartz (1 February 2020). "Featured Map: First ETOPS-120 Revenue Flight". The Great Circle Mapper.
  8. Guy Gratton (17 March 2018). Initial Airworthiness: Determining the Acceptability of New Airborne Systems. Springer Science+Business Media. ISBN   9783319756172.
  9. "A330 is first airliner to be certified for ETOPS 'beyond 180 minutes'" (Press release). Airbus. 12 November 2009. Retrieved 2 July 2011.
  10. "Extended Operations (ETOPS and Polar Operations)". Federal Aviation Administration. July 13, 2008. Archived from the original (PDF) on February 9, 2017. Retrieved October 5, 2008.
  11. "Boeing to Offer up to 330-Minute ETOPS on 777" (Press release). Boeing. Dec 12, 2011.
  12. "Boeing, Air New Zealand Celebrate First Flight Approved for 330-Minute ETOPS" (Press release). Boeing. December 1, 2015.
  13. "Boeing Receives 330-Minute ETOPS Certification for 787s" (Press release). Boeing. 28 May 2014.
  14. "EASA certifies A350 XWB for up to 370 minute ETOPS" (Press release). Airbus. 15 Oct 2014.
  15. "Boeing 747-8 Intercontinental Receives FAA Approval for 330-Minute ETOPS" (Press release). Boeing. March 18, 2015.
  16. Higgins, Michelle (29 July 2007). "The Flights Are Long. The Planes Are Cramped". New York Times. Retrieved 29 July 2007.
  17. Paur, Jason. "High Winds Forcing Pitstops On Transatlantic Flights". Wired. Retrieved 23 February 2016.
  18. "Aircraft certification considerations" (PDF). EDTO Workshop. ICAO. 2014.
  19. "CAT.OP.MPA.140". part-aero.com. Retrieved 2018-10-07.
  20. Federal Aviation Administration (January 16, 2007). "Extended Operations (ETOPS) of MultiEngine Airplanes" (PDF). Rules and Regulations. Vol. 72, no. 9. Federal Register. p. 1808.
  21. Federal Aviation Administration (January 16, 2007). "Extended Operations (ETOPS) of MultiEngine Airplanes" (PDF). Rules and Regulations. Vol. 72, no. 9. Federal Register. p. 1813.
  22. "New ETOPS Regulations" (PDF). Information for Operators. FAA. Jan 26, 2007.