General Electric J73

Last updated
J73
General Electric J73.jpg
Cutaway of a J73 at the NMUSAF
Type Turbojet
National origin United States
Manufacturer General Electric
Major applications North American F-86H Sabre
Number built870
Developed from General Electric J47
Developed into General Electric J79

The General Electric J73 turbojet was developed by General Electric from the earlier J47 engine. Its original USAF designation was J47-21, but with innovative features including variable inlet guide vanes, double-shell (inner and outer) combustor case, and 50% greater airflow was redesignated J73. Its only operational use was in the North American F-86H.

Contents

Design and development

An engine, uprated from the J47, was required for the F-86H. The mass flow was increased by relocating accessories from the centre of the compressor inlet to the underside of the engine. This allowed a reduction in blade hub diameter, which together with an increase in tip diameter, gave a bigger area for air to enter the compressor. The area through the combustion chambers also had to be increased. This was done by replacing the multiple individual chambers with a single annular casing with individual flame tubes or cans known as cannular. [1]

The pressure ratio was increased and variable inlet guide vanes fitted to prevent low-RPM problems (rotating stall/blade flutter) with the higher design pressure ratio. A 2-stage turbine was required. [2] [3]

A low boost (10% at take-off) afterburner was fitted. It was known as a tailpipe augmentation (TPA) system. [3]

Nuclear powered

Four J73 engines were converted to produce thrust using nuclear energy instead of jet fuel. Testing was done in 1957 at the Atomic Energy Commission's National Reactor testing station. The engines were modified to pass the compressor air through a heat exchanger, in which heat was transferred from a nuclear reactor, before entering the compressor turbine at 1,400 degrees F. [4]

Variants

F-86H Sabre F-86H Sabre in flight 1950s.jpg
F-86H Sabre
J73-GE-1
J73-GE-3
9,200 lbf (40.92 kN) for the North American F-86H Sabre.
J73-GE-5
Variant intended for a proposed Advanced F-89. [5]

Applications

YF-84J Thunderstreak Republic YF-84J Thunderstreak.jpg
YF-84J Thunderstreak

Specifications (J73-GE-3)

Data from Flight 9 April 1954 : Aero Engines 1954, [6] Aircraft engines of the World 1953 [7]

General characteristics

J73-GE-5 with afterburning

Components

Performance

J73-GE-5 - 9,500 lbf (42 kN) dry, 12,500 lbf (56 kN) with afterburner
J73-GE-5 - 2.64 dry, 3.47 with afterburner

See also

Related development

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Pratt & Whitney J58</span> High-speed jet engine by Pratt & Whitney

The Pratt & Whitney J58 is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds. Because of the wide speed range of the aircraft, the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed.

<span class="mw-page-title-main">Pratt & Whitney J57</span> Turbojet engine

The Pratt & Whitney J57 is an axial-flow turbojet engine developed by Pratt & Whitney in the early 1950s. The J57 was the first 10,000 lbf (45 kN) thrust class engine in the United States. The J57/JT3C was developed into the J52 turbojet, the J75/JT4A turbojet, the JT3D/TF33 turbofan, and the XT57 turboprop. The J57 and JT3C saw extensive use on fighter jets, jetliners, and bombers for many decades.

<span class="mw-page-title-main">Lyulka AL-21</span>

The Lyulka AL-21 is an axial flow turbojet engine created by the Soviet Design Bureau named for its chief designer Arkhip Lyulka.

<span class="mw-page-title-main">General Electric J79</span> Axial flow turbojet engine

The General Electric J79 is an axial-flow turbojet engine built for use in a variety of fighter and bomber aircraft and a supersonic cruise missile. The J79 was produced by General Electric Aircraft Engines in the United States, and under license by several other companies worldwide. Among its major uses was the F-104 Starfighter, B-58 Hustler, F-4 Phantom II, A-5 Vigilante and IAI Kfir.

<span class="mw-page-title-main">Allison J35</span>

The General Electric/Allison J35 was the United States Air Force's first axial-flow compressor jet engine. Originally developed by General Electric in parallel with the Whittle-based centrifugal-flow J33, the J35 was a fairly simple turbojet, consisting of an eleven-stage axial-flow compressor and a single-stage turbine. With the afterburner, which most models carried, it produced a thrust of 7,400 lbf (33 kN).

<span class="mw-page-title-main">Armstrong Siddeley Sapphire</span> 1940s British turbojet aircraft engine

The Armstrong Siddeley Sapphire is a British turbojet engine that was produced by Armstrong Siddeley in the 1950s. It was the ultimate development of work that had started as the Metrovick F.2 in 1940, evolving into an advanced axial flow design with an annular combustion chamber that developed over 11,000 lbf (49 kN). It powered early versions of the Hawker Hunter and Handley Page Victor, and every Gloster Javelin. Production was also started under licence in the United States by Wright Aeronautical as the J65, powering a number of US designs. The Sapphire's primary competitor was the Rolls-Royce Avon.

<span class="mw-page-title-main">General Electric J47</span> Turbojet Engine developed in 1947

The General Electric J47 turbojet was developed by General Electric from its earlier J35. It first flew in May 1948. The J47 was the first axial-flow turbojet approved for commercial use in the United States. It was used in many types of aircraft, and more than 30,000 were manufactured before production ceased in 1956. It saw continued service in the US military until 1978. Packard built 3,025 of the engines under license.

<span class="mw-page-title-main">Snecma Atar</span> Turbojet aircraft engine

The Snecma Atar is a French axial-flow turbojet engine built by Snecma. It was derived from the German World War II BMW 018 design, and developed by ex-BMW engineers through a progression of more powerful models. The name is derived from its original design group, Atelier technique aéronautique de Rickenbach near Lindau within the French Occupation Zone of Germany. The Atar powered many of the French post-war jet aircraft, including the Vautour, Étendard and Super Étendard, Super Mystère and several models of the Mirage.

<span class="mw-page-title-main">General Electric J85</span> Turbojet aircraft engine

The General Electric J85 is a small single-shaft turbojet engine. Military versions produce up to 2,950 lbf (13.1 kN) of thrust dry; afterburning variants can reach up to 5,000 lbf (22 kN). The engine, depending upon additional equipment and specific model, weighs from 300 to 500 pounds. It is one of GE's most successful and longest in service military jet engines, with the civilian versions having logged over 16.5 million hours of operation. The United States Air Force plans to continue using the J85 in aircraft through 2040. Civilian models, known as the CJ610, are similar but supplied without an afterburner and are identical to non-afterburning J85 variants, while the CF700 adds a rear-mounted fan for improved fuel economy.

<span class="mw-page-title-main">General Electric F404</span> Turbofan aircraft engine family

The General Electric F404 and F412 are a family of afterburning turbofan engines in the 10,500–19,000 lbf (47–85 kN) class. The series is produced by GE Aerospace. Partners include Volvo Aero, which builds the RM12 variant. The F404 was developed into the larger F414 turbofan, as well as the experimental GE36 civil propfan.

<span class="mw-page-title-main">Tumansky R-11</span>

The Tumansky R-11 is a Soviet Cold War-era turbojet engine.

<span class="mw-page-title-main">Tumansky R-13</span>

The Tumansky R-13 is a Soviet turbojet engine designed by Sergei Alekseevich Gavrilov.

<span class="mw-page-title-main">Tumansky R-25</span> 1970s Soviet turbojet aircraft engine

The Tumansky R-25 is a turbojet engine, which is seen as the ultimate development of Tumansky R-11. It was designed under the leadership of Sergei Alekseevich Gavrilov.

<span class="mw-page-title-main">Lyulka AL-7</span>

The Lyulka AL-7 was a turbojet designed by Arkhip Mikhailovich Lyulka and produced by his Lyulka design bureau. The engine was produced between 1954 and 1970.

<span class="mw-page-title-main">Tumansky RD-9</span> Turbojet aircraft engine

The Tumansky RD-9 was an early Soviet turbojet engine, not based on pre-existing German or British designs. The AM-5, developed by scaling down the AM-3, was available in 1952 and completed testing in 1953; it produced 25.5 kN (5,700 lbf) thrust without afterburner. The AM-5 engine is notable for making possible the first mass-produced supersonic interceptors such as the MiG-19, and the first Soviet all-weather area interceptor, the Yak-25. When Sergei Tumansky replaced Alexander Mikulin as the OKB-24's chief designer in 1956, the engine was renamed RD-9. The engine was later built under license in China as the WP-6.

<span class="mw-page-title-main">Allison J71</span>

The Allison J71 was a single spool turbojet engine, designed and built in the United States. It began development in 1948 as a much modified J35, originally designated J35-A-23.

<span class="mw-page-title-main">General Electric YJ93</span>

The General Electric YJ93 turbojet engine was designed as the powerplant for both the North American XB-70 Valkyrie bomber and the North American XF-108 Rapier interceptor. The YJ93 was a single-shaft axial-flow turbojet with a variable-stator compressor and a fully variable convergent/divergent exhaust nozzle. The maximum sea-level thrust was 28,800 lbf (128 kN).

<span class="mw-page-title-main">General Electric J87</span>

The General Electric J87 was a nuclear-powered turbojet engine designed to power the proposed WS-125 long-range bomber. The program was started in 1955 in conjunction with Convair for a joint engine/airframe proposal for the WS-125. It was one of two nuclear-powered gas turbine projects undertaken by GE, the other one being the X39 project.

<span class="mw-page-title-main">General Electric GE4</span>

The General Electric GE4 turbojet engine was designed in the late 1960s as the powerplant for the Boeing 2707 supersonic transport. The GE4 was a nine-stage, single-shaft, axial-flow turbojet based largely on the General Electric YJ93 which powered the North American XB-70 bomber. The GE4 was the most powerful engine of its era, producing 50,000 lbf (220 kN) dry, and 65,000 lbf (290 kN) with afterburner. The Boeing 2707 was cancelled in 1971, putting an end to further work on the GE4.

The Tumansky R-21 was a Soviet turbojet engine of the 1960s. Used for development only, the project was canceled.

References

  1. "Aero Engines 1957". Flight: 133. 26 July 1957.
  2. Johnsen, Irving A.; Bullock, Robert 0. (1965). NASA SP-36 : AERODYNAMIC DESIGN OF AXIAL-FLOW COMPRESSORS (PDF). Washington D.C.: NASA. pp. 27a, 44. Archived from the original (PDF) on 20 July 2018. Retrieved 24 February 2019.
  3. 1 2 Seven Decades of Progress: A Heritage of Aircraft Turbine Technology. Fallbrook: Aero Publishers. 1979. p. 82. ISBN   9780816883554.
  4. https://archive.org/details/Aviation_Week_1957-03-18/page/n13/mode/2up, p.27
  5. "Standard Aircraft Characteristics: Advanced F-89" (PDF). US Air Force. 3 December 1951. Retrieved 30 December 2018.
  6. "Aero Engines 1954 : The World's Leading Aero-engine Constructors and their Products Reviewed". 9 April 1954: 457. Retrieved 24 February 2019.{{cite journal}}: Cite journal requires |journal= (help)
  7. Wilkinson, Paul H. (1953). Aircraft engines of the World 1953 (11th ed.). London: Sir Isaac Pitman & Sons Ltd. pp. 82–83.

Further reading