Vela (satellite)

Last updated
Vela
Vela 5B in Orbit.gif
Vela 5B Satellite in Orbit.
Country of origin United States
Operator U.S. Air Force
Applications Reconnaissance
Specifications
Regime Highly elliptical orbit
Design life15 years
Production
StatusDisabled
Launched12
Operational0
Retired12
Maiden launch Vela 1A
Last launch Vela 6B
Related spacecraft
Derived fromProject Vela & Integrated Operational Nuclear Detection System (IONDS)

Vela was the name of a group of satellites developed as the Vela Hotel element of Project Vela by the United States to detect nuclear detonations and monitor Soviet Union compliance with the 1963 Partial Test Ban Treaty.

Contents

Vela started out as a small budget research program in 1959. It ended 26 years later as a successful, cost-effective military space system, which also provided scientific data on natural sources of space radiation. In the 1970s, the nuclear detection mission was taken over by the Defense Support Program (DSP) satellites. In the late 1980s, it was augmented by the Navstar Global Positioning System (GPS) satellites. The program is now called the Integrated Operational NuDet (Nuclear Detonation) Detection System (IONDS).

Deployment

Twelve satellites were built, six of the Vela Hotel design and six of the Advanced Vela design. The Vela Hotel series was to detect nuclear tests in space, while the Advanced Vela series was to detect not only nuclear explosions in space but also in the atmosphere.

All spacecraft were manufactured by TRW and launched in pairs, either on an AtlasAgena or Titan III-C boosters. They were placed in orbits of 118,000 km (73,000 miles) [1] to avoid [2] particle radiation trapped in the Van Allen radiation belts. Their apogee was about one-third of the distance to the Moon. The first Vela Hotel pair was launched on October 17, 1963, [3] one week after the Partial Test Ban Treaty went into effect, and the last in 1965. They had a design life of six months, but were only actually shut down after five years. Advanced Vela pairs were launched in 1967, 1969, and 1970. They had a nominal design life of 18 months, later changed to seven years. However, the last satellite to be shut down was Vehicle 9 in 1984, which had been launched in 1969 and had lasted nearly 15 years.

The Vela series began with the launch of Vela 1/2 on October 17, 1963, a flight also marking the maiden voyage of the Atlas-Agena SLV-3 vehicle. The second pair of satellites launched on July 17, 1964, and the third on July 20, 1965. The last launch miscarried slightly when one Atlas vernier engine shut down at liftoff, while the other vernier operated at above-normal thrust levels. This resulted in a slightly lower than normal inclination for the satellites, however the mission was carried out successfully. The problem was traced to a malfunction of the vernier LOX poppet valve.

Subsequent Vela satellites were switched to the Titan IIIC booster due to their increased weight and complexity. Three more sets were launched on April 28, 1967, May 23, 1969, and April 8, 1970. The last pair of Vela satellites operated until 1985, when they were finally shut down, the Air Force claimed them to be the world's longest operating satellites. They remained in orbit until decaying at the end of 1992.

Table of Vela launches: [4]
Launch DateSatelliteCOSPAR IDLaunch vehicleSerialLaunch massInstrumentsSatellite photo
17 October 1963 Vela 1A 1963-039A Atlas-Agena-D197D150 kilograms (330 lb)3 instruments HD.6D.931 (10405827416).jpg
Vela 1B 1963-039C
17 July 1964 Vela 2A 1964-040A Atlas-Agena-D216D150 kilograms (330 lb)8 instruments
Vela 2B 1964-040B
20 July 1965 Vela 3A 1965-058A Atlas-Agena-D225D150 kilograms (330 lb)8 instruments HD.6D.929 (10405786955).jpg
Vela 3B 1965-058B
28 April 1967 Vela 4A 1967-040A Titan IIIC 3C-10231 kilograms (509 lb)9 instruments HD.6D.927 (10405785575).jpg
Vela 4B 1967-040B
23 May 1969 Vela 5A 1969-046D Titan IIIC 3C-15259 kilograms (571 lb)8 instruments Vela5b.jpg
Vela 5B 1969-046E
8 April 1970 Vela 6A 1970-027A Titan IIIC 3C-18261 kilograms (575 lb)8 instruments
Vela 6B 1970-027B

Instruments

Vela-5B All-Sky Monitor Instrument Vela-5B All-Sky Monitor Instrument.gif
Vela-5B All-Sky Monitor Instrument

The original Vela satellites were equipped with 12 external X-ray detectors and 18 internal neutron and gamma-ray detectors. They were equipped with solar panels generating 90 watts.

The Advanced Vela satellites were additionally equipped with two non-imaging silicon photodiode sensors called bhangmeters which monitored light levels over sub-millisecond intervals. They could determine the location of a nuclear explosion to within about 3,000 miles. Atmospheric nuclear explosions produce a unique signature, often called a "double-humped curve": a short and intense flash lasting around 1 millisecond, followed by a second much more prolonged and less intense emission of light taking a fraction of a second to several seconds to build up. The effect occurs because the surface of the early fireball is quickly overtaken by the expanding atmospheric shock wave composed of ionised gas. Although it emits a considerable amount of light itself it is opaque and prevents the far brighter fireball from shining through. As the shock wave expands, it cools down becoming more transparent allowing the much hotter and brighter fireball to become visible again.

No single natural phenomenon is known to produce this signature, although there was speculation that the Velas could record exceptionally rare natural double events, such as a meteoroid strike on the spacecraft that produces a bright flash or triggering on a lightning superbolt in the Earth's atmosphere, as may have occurred in the Vela incident. [5] [6] [7]

They were also equipped with sensors which could detect the electromagnetic pulse from an atmospheric explosion.

Additional power was required for these instruments, and these larger satellites consumed 120 watts generated from solar panels. Serendipitously, the Vela satellites were the first devices ever to detect cosmic gamma ray bursts.

Role in discovering gamma-ray bursts

On July 2, 1967, at 14:19 UTC, the Vela 4 and Vela 3 satellites detected a flash of gamma radiation unlike any known nuclear weapons signature. [8] Uncertain what had happened but not considering the matter particularly urgent, the team at the Los Alamos Scientific Laboratory, led by Ray Klebesadel, filed the data away for investigation. As additional Vela satellites were launched with better instruments, the Los Alamos team continued to find inexplicable gamma-ray bursts in their data. By analyzing the different arrival times of the bursts as detected by different satellites, the team was able to determine rough estimates for the sky positions of sixteen bursts [9] and definitively rule out a terrestrial or solar origin. Contrary to popular belief, the data was never classified. [10] After thorough analysis, the findings were published in 1973 as an Astrophysical Journal article entitled "Observations of Gamma-Ray Bursts of Cosmic Origin". [9] This alerted the astronomical community to the existence of gamma-ray bursts, now recognised as the most violent events in the universe.

Vela 5A and 5B

The scintillation X-ray detector (XC) aboard Vela 5A and its twin Vela 5B consisted of two 1 mm thick NaI(Tl) crystals mounted on photomultiplier tubes and covered by a 0.13 mm thick beryllium window. Electronic thresholds provided two energy channels, 3–12 keV and 6–12 keV. [11] In addition to the x-ray Nova announcement indicated above the XC Detector aboard Vela 5A and 5B also discovered and announced the first X-Ray Burst ever reported. [12] The announcement of this discovery predated the initial announcement of the discovery of gamma-ray bursts by 2 years. In front of each crystal was a slat collimator providing a full width at half maximum (FWHM) aperture of ~6.1 × 6.1 degrees. The effective detector area was ~26 cm2. The detectors scanned a great circle every 60 seconds, and covered the whole sky every 56 hours. [13] Sensitivity to celestial sources was severely limited by the high intrinsic detector background, equivalent to about 80% of the signal from the Crab Nebula, one of the brightest sources in the sky at these wavelengths. [13] The Vela 5B satellite X-ray detector remained functional for over ten years.

Vela 6A and 6B

Like the previous Vela 5 satellites, the Vela 6 nuclear test detection satellites were part of a program run jointly by the Advanced Research Projects of the U.S. Department of Defense and the U.S. Atomic Energy Commission, managed by the U.S. Air Force. The twin spacecraft, Vela 6A and 6B, were launched on 8 April 1970. Data from the Vela 6 satellites were used to look for correlations between gamma-ray bursts and X-ray events. At least two good candidates were found, GB720514 and GB740723. The X-ray detectors failed on Vela 6B on 27 January 1972 and on Vela 6A on 12 March 1972.

Controversial observations

Some controversy still surrounds the Vela program. On 22 September 1979 the Vela 5B (also known as Vela 10 and IRON 6911 [14] ) satellite detected the characteristic double flash of an atmospheric nuclear explosion near the Prince Edward Islands. Still unsatisfactorily explained, this event has become known as the Vela incident. President Jimmy Carter initially deemed the event to be evidence of a joint Israeli and South African nuclear test, though the now-declassified report of a scientific panel he subsequently appointed while seeking reelection concluded that it was probably not the event of a nuclear explosion.[ citation needed ] In 2018, a new study confirmed that it is highly likely that it was a nuclear test, conducted by Israel. [15] [16] An alternative explanation involves a magnetospheric event affecting the instruments.

An earlier incident occurred when an intense solar storm on August 4, 1972, triggered the system to event mode as if an explosion occurred, but this was quickly resolved by personnel monitoring the data in real-time. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Gamma-ray burst</span> Flashes of gamma rays from distant galaxies

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies, described by NASA as "the most powerful class of explosions in the universe". They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths.

<span class="mw-page-title-main">Fermi Gamma-ray Space Telescope</span> Space telescope for gamma-ray astronomy launched in 2008

The Fermi Gamma-ray Space Telescope, formerly called the Gamma-ray Large Area Space Telescope (GLAST), is a space observatory being used to perform gamma-ray astronomy observations from low Earth orbit. Its main instrument is the Large Area Telescope (LAT), with which astronomers mostly intend to perform an all-sky survey studying astrophysical and cosmological phenomena such as active galactic nuclei, pulsars, other high-energy sources and dark matter. Another instrument aboard Fermi, the Gamma-ray Burst Monitor, is being used to study gamma-ray bursts and solar flares.

<span class="mw-page-title-main">Compton Gamma Ray Observatory</span> NASA space observatory designed to detect X-rays and gamma rays (1991–2000)

The Compton Gamma Ray Observatory (CGRO) was a space observatory detecting photons with energies from 20 keV to 30 GeV, in Earth orbit from 1991 to 2000. The observatory featured four main telescopes in one spacecraft, covering X-rays and gamma rays, including various specialized sub-instruments and detectors. Following 14 years of effort, the observatory was launched from Space Shuttle Atlantis during STS-37 on April 5, 1991, and operated until its deorbit on June 4, 2000. It was deployed in low Earth orbit at 450 km (280 mi) to avoid the Van Allen radiation belt. It was the heaviest astrophysical payload ever flown at that time at 16,300 kilograms (35,900 lb).

<span class="mw-page-title-main">Project Vela</span>

Project Vela was a United States Department of Defense project to monitor Soviet Union compliance with the 1963 Partial Test Ban Treaty. The treaty banned the testing of nuclear weapons in the atmosphere, in outer space, and underwater, but permitted underground testing.

<span class="mw-page-title-main">Neil Gehrels Swift Observatory</span> NASA satellite of the Explorer program

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/Visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

<span class="mw-page-title-main">NuSTAR</span> NASA X-ray space telescope of the Explorer program

NuSTAR is a NASA space-based X-ray telescope that uses a conical approximation to a Wolter telescope to focus high energy X-rays from astrophysical sources, especially for nuclear spectroscopy, and operates in the range of 3 to 79 keV.

The InterPlanetary Network (IPN) is a group of spacecraft equipped with gamma ray burst (GRB) detectors. By timing the arrival of a burst at several spacecraft, its precise location can be found. The precision for determining the direction of a GRB in the sky is improved by increasing the spacing of the detectors, and also by more accurate timing of the reception. Typical spacecraft baselines of about one AU and time resolutions of tens of milliseconds can determine a burst location within several arcminutes, allowing follow-up observations with other telescopes.

<span class="mw-page-title-main">AGILE (satellite)</span> X-ray and gamma ray astronomical satellite

AGILE was an X-ray and gamma ray astronomical satellite of the Italian Space Agency (ASI). Launched in 2007, it de-orbited in February 2024.

SGR 0526−66 is a soft gamma repeater (SGR), located in the Super-Nova Remnant (SNR) 0526−66.1, otherwise known as N49, in the Large Magellanic Cloud. It was the first soft gamma repeater discovered, and as of 2015, the only known located outside our galaxy. First detected in March 1979, it was located by using the measurement of the arrival time differences of the signal by the set of artificial satellites equipped with gamma ray detectors. The association with N49 can only be indirect: it seems clear that soft gamma repeaters form in young stellar clusters. It is not certain that the explosion that gave birth to SGR 0525-66 is also the one that produced the remnant N49.

The history of gamma-ray began with the serendipitous detection of a gamma-ray burst (GRB) on July 2, 1967, by the U.S. Vela satellites. After these satellites detected fifteen other GRBs, Ray Klebesadel of the Los Alamos National Laboratory published the first paper on the subject, Observations of Gamma-Ray Bursts of Cosmic Origin. As more and more research was done on these mysterious events, hundreds of models were developed in an attempt to explain their origins.

<span class="mw-page-title-main">OSO 7</span>

OSO 7 or Orbiting Solar Observatory 7, before launch known as OSO H is the seventh in the series of American Orbiting Solar Observatory satellites launched by NASA between 1962 and 1975. OSO 7 was launched from Cape Kennedy on 29 September 1971 by a Delta N rocket into a 33.1° inclination, low-Earth orbit, and re-entered the Earth's atmosphere on 9 July 1974. It was built by the Ball Brothers Research Corporation (BBRC), now known as Ball Aerospace, in Boulder Colorado.

<span class="mw-page-title-main">Gamma-ray astronomy</span> Observational astronomy performed with gamma rays

Gamma-ray astronomy is the astronomical observation of gamma rays, the most energetic form of electromagnetic radiation, with photon energies above 100 keV. Radiation below 100 keV is classified as X-rays and is the subject of X-ray astronomy.

GRB 031203 was a gamma-ray burst (GRB) detected on December 3, 2003. A gamma-ray burst is a highly luminous flash associated with an explosion in a distant galaxy and producing gamma rays, the most energetic form of electromagnetic radiation, and often followed by a longer-lived "afterglow" emitted at longer wavelengths.

Ray Klebesadel is a scientist, now retired, who was a member of the gamma-ray astronomy group at the Los Alamos National Laboratory (LANL) in New Mexico that discovered cosmic gamma-ray bursts using data from the Vela satellites, which has been deployed by the United States after the Nuclear Test Ban Treaty of 1963 to police the ban on nuclear tests in space. The unexplained gamma-ray flashes were first found in 1969, in data collected in 1967. Klebesadel has said that contrary to popular belief, the data was never classified. The discovery was published in 1973 as an Astrophysical Journal letter co-authored by Ian Strong and Roy Olson entitled "Observations of Gamma-Ray Bursts of Cosmic Origin". It was published again in 1976 in the Scientific American.

GRB 790305b is an event that took place on 5 March 1979. It was an extremely bright burst that was successfully localized to supernova remnant N49 in the Large Magellanic Cloud. This event is now interpreted as a magnetar giant flare, more related to SGR flares than "true" gamma-ray bursts. It is the first observed SGR megaflare, a specific type of short GRB. It has been associated with the magnetar PSR B0525-66.

<span class="mw-page-title-main">Mikhailo Lomonosov (satellite)</span>

Mikhailo Lomonosov is an astronomical satellite operated by Moscow State University (MSU) named after Mikhail Lomonosov.

A nuclear detonation detection system (NDDS) is a device or a series of devices that are able to indicate, and pinpoint a nuclear explosion has occurred as well as the direction of the explosion. The main purpose of these devices or systems was to verify compliance of countries that signed nuclear treaties such as the Partial Test Ban treaty of 1963 (PTBT) and the Treaty of Tlatelolco.

<span class="mw-page-title-main">Vela 2B</span>

Vela 2B was a U.S. reconnaissance satellite for detecting explosions and nuclear tests on land and in space, the first of the second pair of Vela series satellites, taken together with Vela 2A and ERS 13 satellites. The secondary task of the ship was space research.

<span class="mw-page-title-main">Vela 3A</span> U.S. reconnaissance satellite

Vela 3A was a U.S. reconnaissance satellite to detect explosions and nuclear tests on land and in space; the first of the third pair of Vela series satellites; taken together with Vela 3B and ERS 17 satellites.

<span class="mw-page-title-main">GRB 221009A</span> Gamma-ray burst

GRB 221009A also known as Swift J1913.1+1946 was an extraordinarily bright and long-lasting gamma-ray burst (GRB) jointly discovered by the Neil Gehrels Swift Observatory and the Fermi Gamma-ray Space Telescope on October 9, 2022. The gamma-ray burst was around seven minutes long, but was detectable for more than ten hours following initial detection, and for several hours was bright enough in visible frequencies to be observable by amateur astronomers. Despite being around two billion light-years away, it was powerful enough to affect Earth's atmosphere, having the strongest effect ever recorded by a gamma-ray burst on the planet. The peak luminosity of GRB 221009A was measured by Konus-Wind to be ~ 2.1 × 1047 J/s and by Fermi-GBM to be ~ 1.0 × 1047 J/s over the 1.024s interval. A burst as energetic and as close to Earth as 221009A is thought to be a once-in-10,000-year event. It was the brightest and most energetic gamma-ray burst ever recorded, being deemed the "BOAT", or brightest of all time.

References

  1. "The Vela 5A satellite". NASA Goddard Space Flight Center. Retrieved 28 October 2015.
  2. "Vela satellite measurements". Los Alamos Scientific Laboratory. Retrieved 17 March 2024.
  3. Encyclopedia Astronautica, Vela nuclear detection surveillance satellites.
  4. Gunter's Space Page. "Vela 1, 2, 3, 4, 5, 6" . Retrieved 21 September 2019.
  5. New York Times. South Africa Stops Short Of Denying Nuclear Test, The Ledger, Lakeland, Florida, originally from The New York Times, 27 October 1979
  6. Lightning Superbolts Detected By Satellites, Science Frontiers, September 1977, No. 1, which in turn cites:
    Turman, B. N (1977). "Detection of lightning superbolts". Journal of Geophysical Research. 82 (18): 2566–2568. Bibcode:1977JGR....82.2566T. doi:10.1029/JC082i018p02566..
    Retrieved from Science-Frontiers.com website July 24, 2010.
  7. Dunning, Brian. "Skeptoid #190: The Bell Island Boom". Skeptoid . Retrieved June 19, 2017. quote (emphasis added): "They also picked up large lightning flashes, and it was in part from the Vela satellites that we learned about lightning superbolts. About five of every ten million bolts of lightning is classified as a superbolt, which is just what it sounds like: An unusually large bolt of lightning, lasting an unusually long time: About a thousandth of a second. Superbolts are almost always in the upper atmosphere, and usually over the oceans."
  8. Schilling 2002, pp. 12–16
  9. 1 2 Klebesadel, Ray W; Strong, Ian B; Olson, Roy A (1973). "Observations of Gamma-Ray Bursts of Cosmic Origin". The Astrophysical Journal. 182: L85. Bibcode:1973ApJ...182L..85K. doi:10.1086/181225.
  10. Bonnell, J. T.; Klebesadel, R. W. (1996). "A brief history of the discovery of cosmic gamma-ray bursts". AIP Conference Proceedings. 384: 979. Bibcode:1996AIPC..384..977B. doi:10.1063/1.51630.
  11. Conner JP, Evans WD, Belian RD (1969). "The Recent Appearance of a New X-Ray Source in the Southern Sky". The Astrophysical Journal. 157: L157–159. Bibcode:1969ApJ...157L.157C. doi:10.1086/180409.
  12. Belian RD, Conner JP, Evans WD (1972). "A Probable Precursor to the X-Ray Nova Centaurus XR-4". The Astrophysical Journal. 171: L87–90. Bibcode:1972ApJ...171L..87B. doi:10.1086/180874.
  13. 1 2 Priedhorsky WC, Holt SS (1987). "Long-term cycles in cosmic X-ray sources". Space Science Reviews. 45 (3–4): 291–348. Bibcode:1987SSRv...45..291P. doi:10.1007/BF00171997. S2CID   120443194.
  14. "Vela 7, 8, 9, 10, 11, 12 (advanced Vela)".
  15. Wright, Christopher M.; De Geer, Lars-Erik (2017). "The 22 September 1979 Vela Incident: The Detected Double-Flash" (PDF). Science & Global Security. 25 (3): 95–124. Bibcode:2017S&GS...25...95W. doi: 10.1080/08929882.2017.1394047 . ISSN   0892-9882.
  16. Weiss, Leonard (2018). "A double-flash from the past and Israel's nuclear arsenal". Bulletin of the Atomic Scientists. Retrieved 2018-08-14.
  17. Knipp, Delores J.; B. J. Fraser; M. A. Shea; D. F. Smart (2018). "On the Little‐Known Consequences of the 4 August 1972 Ultra‐Fast Coronal Mass Ejecta: Facts, Commentary and Call to Action". Space Weather. 16 (11): 1635–1643. Bibcode:2018SpWea..16.1635K. doi: 10.1029/2018SW002024 .