Samos (satellite)

Last updated
An artist impression of SAMOS photoreconnaissance missions. SAMOS MIssion CAL21.jpg
An artist impression of SAMOS photoreconnaissance missions.

The SAMOS (Misidentified as Satellite and Missile Observation System) [1] or SAMOS-E program was a relatively short-lived series of reconnaissance satellites for the United States in the early 1960s, also used as a cover for the initial development of the KH-7 GAMBIT system. [2] Reconnaissance was performed with film cameras and television surveillance from polar low Earth orbits with film canister returns and transmittals over the United States. SAMOS was first launched in 1960 from Vandenberg Air Force Base.

Contents

SAMOS was also known by the unclassified terms Program 101 and Program 201. [3]

History

Background

WS-117L and costs

SAMOS started as part of the WS-117L satellite reconnaissance and protection program of the United States Air Force in 1956. In May 1958, the Department of Defense directed the transfer of the WS-117L program to ARPA. Significant parts of the SAMOS development program were SAMOS-E (optical reconnaissance), SAMOS-F (ELINT Ferret reconnaissance). [4]

In FY1958, WS-117L was funded by the Air Force at a level of US$ 108.2 million (inflation adjusted US$ 1.1 billion in 2024). For SAMOS, USAF, and ARPA spent a combined sum of US$82.9 million in FY1959 (inflation adjusted US$ 0.83 billion in 2024) and US$163.9 million in FY1960 (inflation adjusted US$ 1.62 billion in 2024). [5]

CORONA and SAMOS

During this period, the rival CORONA program, which saw its first launch in February 1959, began operation. SAMOS emerged as a more advanced satellite with additional capabilities that due to its larger mass would be launched on the Atlas-Agena booster instead of the Thor-Agena. While CORONA took photographs and returned them to Earth in a film capsule, SAMOS would instead electronically scan its film and beam images down by radio link.

While CORONA began flying in 1959, the reliability of the program for its first three years was abysmal and a backup reconnaissance program was needed. Moreover, the fear of the "missile gap" with the Soviet Union was very great, with space successes and boasts by Soviet politicians seeming to hint that the USSR not only had a large arsenal of nuclear missiles on hand, but were quite willing to use them. The US ballistic missile arsenal in 1960 consisted of a handful of Atlas ICBMs that were exposed to Soviet attack, took a long time to prepare for launch, and whose test flight record did not inspire much confidence. The Thor and Jupiter IRBMs stationed in the UK, Italy, and Turkey were not much of an improvement, also their bases could be attacked by Soviet bombers. Intelligence on Soviet missile activities was considered vital, but the only viable option, U-2 reconnaissance flights, had been halted by the Gary Powers shootdown in May 1960. Unbeknownst to the Pentagon, Soviet missiles were deployed in far smaller numbers than generally believed and their reliability was no better than any US missile. The initial SAMOS satellites were known as Program 101 and were merely a test model designed to verify the operability of the photo-optical camera system.

Name and secrecy

"Samos" was the name of a Greek island and the name was picked with the belief that nobody would associate it with reconnaissance. However, a mistaken rumor later emerged that the name was an acronym for "Satellite And Missile Observation System". President Eisenhower was adamant about cultivating the image that the US space program was only for peaceful purposes. The Air Force for a while managed to create the fiction that Discoverer was a series of scientific satellites, but SAMOS's real purpose was known from the beginning, and efforts to not link it to Discoverer were made. Although the existence and mission purpose of SAMOS was publicly acknowledged until the fall of 1961, the Air Force did not release detailed information about the satellites or exactly what they were doing during their missions.

SAMOS 1

Atlas LV-3A Agena A with SAMOS 1 Atlas LV-3A Agena A with SAMOS 1 3.jpg
Atlas LV-3A Agena A with SAMOS 1

SAMOS 1 launch took place from PALC 1-1 (Point Arguello Launch Complex - later absorbed into the main launch center at Vandenberg Air Force Base) at 20:34 GMT on 11 October 1960, using Atlas vehicle 57D and Agena 2101. The Atlas lifted smoothly and steered downrange, as the weather was clear and cloudless, visibility was excellent and the launch vehicle could be seen until after booster section separation. Initial jubilation at the successful launch turned to dismay when the real-time telemetry readouts showed that the nitrogen pressure gas for the Agena-A's attitude control jets was gone. Without this, the stage could not be stabilized for ignition so that after separation from the Atlas, the Agena-A was left with no attitude control. Telemetry indicated an erratic attitude rate and abnormal gimbaling of the Bell XLR-81 engine. The Agena-A burn lasted 123 seconds, slightly longer than nominal, but tracking stations in VAFB, Kodiak Island, and Hawaii found no indication that orbit had been achieved, and it was concluded that the vehicle had reentered and broken up over an unknown point in the Pacific Ocean. The postflight analysis also found that the Atlas guidance system had malfunctioned in flight, due to either a failure of the rate beacon or waveguide antenna, but the guidance system was not telemetered so an exact cause could not be determined. The guidance system was unable to generate any steering or programmed engine cutoff commands, however, backup signals from the missile programmer managed to ensure a proper flight path and on-time engine cutoff. The Agena-A malfunction was traced to a technician installing a pad umbilical release lanyard improperly, which resulted in the Agena-A nitrogen quick fill line being ripped out at liftoff. Film and photographs of the launch clearly showed the gas escaping. At Agena engine ignition, the performance was also below normal, suggesting damage to the pneumatic system as well. [6]

The major objective of the SAMOS 1 mission was to determine the engineering feasibility of obtaining ground observation capability from an orbiting satellite. It launched on 11 October 1960 at 20:34 GMT from the Pacific Missile Range in Point Arguello, California. The first stage separated at 249.9 seconds after liftoff. The Agena-A second stage ignited at 506.7 seconds and cutoff at 629.3 seconds, as planned, but a loss of nitrogen gas pressure had disrupted the guidance and control systems at 123 seconds, resulting in poor trajectory and failure to orbit the payload. Tracking telemetry was lost prior to the Agena-A ignition, so the exact trajectory was unknown. SAMOS 1 was the first satellite in the series SAMOS launched by the US Air Force from Vandenberg Air Force Base aboard an Atlas Agena-A rocket. It was a first-generation photo surveillance satellite intended to radio relay images back to Earth but loss of nitrogen gas pressure disrupted the guidance and control systems, causing a second stage failure. No data were returned. The payload comprised photographic and related test equipment, telemetry, radiation, tracking, and command instrumentation. The payload was housed in the Agena second stage. The entire stage was designed to go into orbit. The stage, including payload and casing, had a planned orbital mass of 1,845 kg. It was a 6.7 meter high, 1.5-meter diameter cylinder. The first stage was a modified Atlas ICBM. The full rocket was 30.2 m high with a base diameter of 3.05 m and a liftoff mass of approximately 124 000 kg. [7]

SAMOS 2

Atlas Agena A with Samos 2 Atlas Agena A with Samos 2 (Jan 31, 1961).jpg
Atlas Agena A with Samos 2

SAMOS 2 was launched on 31 January 1961, on Atlas 70D and Agena 2102. Unlike with SAMOS 1, the weather was foggy and gray, and the pad was not even visible from the blockhouse. This time, everything worked perfectly and SAMOS 2 achieved orbit. The F-1 ferret system was tested first, followed by the E-1 electro-optical cameras, which transmitted images of approximately 30.5 m of resolution. On-orbit 21, ground controllers sent the command to jettison the F-1 antenna, which was partially obstructing the camera, in the hopes of even better images. However, something went disastrously wrong when all telemetry signals from SAMOS 2 ceased. It was believed that the separation mechanism for the F-1 antenna had caused the partial or complete disintegration of the satellite vehicle. SAMOS 2 remained in orbit until it decayed into the atmosphere on 21 October 1971. [8]

SAMOS 2 was launched from the Pacific Missile Range at 20:24:00 GMT, into a near-circular polar orbit of 474 x 557 km, 94.97 min of revolution, and 97.4° of inclination, to determine the capability for making observations of space, the atmosphere, and the nature of the globe from satellites. The 1 860 kg spacecraft was a cylinder 6.7 m long and 1.5 m in diameter, and it comprised the entire Agena-A second stage. Included in the instrumentation were photographic and associated test equipment, acoustical (Microphone Density Gauge) micrometeorite detection apparatus, a plasma probe, and an electric field meter. The computer on board was digital-to-analog. Telemetry, tracking, and command equipment completed the payload. Details about the satellite's transmitter were not announced. A conical nose cap detached from the satellite casing and remained in orbit. The expected lifetime of the satellite was 15 years, and the expected lifetime of the nose cap was 12 years. [9]

The next attempt did not take place for seven months, because of the switch to the larger Agena-B second stage that could be restarted in orbit and the operational Program 101A satellites, which had a more advanced camera system with better resolution and a wider field of view. SAMOS satellites after SAMOS 2 also sported a large "mushroom cap" nose cone, as early plans had envisioned flying a crewed capsule similar to Project Mercury.

SAMOS 3

Atlas Agena B with SAMOS 3 Atlas Agena B with SAMOS 3 (Sep. 9, 1961).jpg
Atlas Agena B with SAMOS 3

The SAMOS 3 launch was a complete disaster. SAMOS 3 lifted from PALC 1-1 on 9 September 1961 at 00:00:00 GMT, was a US Air Force first-generation photo surveillance satellite with 7 instruments on board [10] but the Atlas booster's engines shut down after the rocket had ascended about 29 cm and it fell back onto the pad in an enormous fireball. Postflight investigation found that an umbilical on PALC 1-1 had not detached on time, resulting in the booster being switched from internal to external power, but since the power umbilicals on the pad had already detached, the result was a complete loss of electrical power to all Atlas systems. The accident necessitated improved procedures to umbilical lanyard installation, and modifications to the launcher system to prevent the hold-down arms from releasing the launch vehicle until all umbilicals had detached.

After SAMOS 3, it was decided to abandon the Program 101/101A satellites entirely and switch to a more conventional film recovery capsule, since the one successful mission had not proven the viability of the electro-optical camera system. While the 101/101A satellites separated from the Agena-B in orbit, the 101B would remain attached and would use it for orbital maneuvers and also deorbiting the film capsule at the end of the mission.

Several more 101/101A satellites were either completed or in a state of partial completion when the program was called off, but the problem of how to dispose of them was never satisfactorily solved. Most were left mothballed in warehouses or scrapped. There was talk of giving the camera systems to NASA for the planetary probe program, but they were of doubtful value for taking photographs of the Moon. The Agena stages that could not be repurposed for other programs were scrapped.

The 101B satellites were originally intended to use an encrypted communications system out of paranoia that the Soviets could not only intercept transmissions, but even reprogram the satellite to land on their territory. Unlike CORONA, the 101B satellites would land with the complete camera system, not just the film capsule, and the Pentagon and State Department dreaded the consequences of a landing on Soviet territory. Ultimately, the encrypted communication requirement was dropped in October 1961, a mere month before the first 101B satellite launched.

As it turned out, PALC 1-1 was not seriously damaged by the explosion of SAMOS 3's booster and repair work only consisted of plumbing and electrical equipment, replacing the launcher mechanism, and cleaning and repainting. By 29 October, the pad was fully restored to working condition.

SAMOS 4

Atlas Agena B with Samos 4 Atlas Agena B with Samos 4 (Nov. 22 1961) 1.jpg
Atlas Agena B with Samos 4

On 22 November 1961 at 00:00:00 GMT, SAMOS 4, the first Program 101B satellite, was a US Air Force first-generation photo surveillance satellite, [11] lifted off. Extensive efforts were made to ensure mission success, such as X-ray testing for bad transistors and super-clean propellant tanks. Unfortunately, the launch was another failure, albeit less dramatic than SAMOS 3. The Atlas suffered a guidance malfunction at T+245 seconds into launch that resulted in loss of pitch control, as well as improper booster and sustainer cutoff signals. Booster jettison happened a few seconds early, while the sustainer engine burned to LOX depletion. The booster pitched up about 160° at SECO, leaving the Agena oriented in the wrong direction for orbital insertion, so when its engine fired, it drove SAMOS 4 into the Pacific Ocean instead of orbit.

It was believed that the improper pitch signals on SAMOS 4's launch vehicle had been caused by the accidental separation of a heat shield covering the retrorockets on the Atlas equipment pods. This would have caused aerodynamic heating of the pitch gyro, and the failure was extremely similar to an incident that occurred during the launch of MIDAS 4 a month earlier, and it led to redesigned heat shields over the retrorockets. The guidance system tracking beacon had also failed in flight, causing the absence of programmed BECO/SECO commands. [12]

SAMOS 4 was the first fully top-secret DoD space mission, as President Kennedy had issued an executive order putting all DoD space programs under strict secrecy. The Air Force announcement said nothing other than that a satellite had been launched on 22 November from PALC 1-1 on an Atlas-Agena B vehicle. SAMOS 4's failure to orbit also went unannounced, although since the Air Force never confirmed that it reached orbit, space program observers quickly guessed that the launch was not a success.

The next two Program 101B satellites contained several technical improvements, such as more sophisticated telemetry and control/communications systems and improved cameras.

SAMOS 5

Atlas Agena B with SAMOS 5 Atlas Agena B with SAMOS 5 (Dec. 22 1961).jpg
Atlas Agena B with SAMOS 5

SAMOS 5 was launched on 22 December 1961 at 19:12:00 GMT, was a first-generation, low-resolution photo surveillance spacecraft, [13] once again with nothing but a brief statement by the Air Force about a launch taking place aboard an Atlas-Agena B from PALC 1-1. Space program observers noted that this time around, the Air Force statement did report the satellite as having attained orbit. Indeed, it did, but the Atlas malfunctioned yet again. This time, the sustainer engine did not cut off on schedule and continued operating until LOX depletion, putting the satellite into a high orbit, which resulted in the deorbit maneuver failing (although given that reentry would have taken place over densely-populated New England, this was not necessarily a bad thing). The reentry command had activated all systems in the satellite, quickly draining the batteries. With the loss of electrical power, the parachutes could not be deployed during reentry, and also since the retrorockets had been expended during the failed deorbit maneuver, SAMOS 5 would only leave orbit once it decayed naturally. Without the parachutes or retrorockets, the capsule's descent would be far too fast for air recovery to be possible, but it could still easily survive reentry and land almost anywhere. The spent Agena-B stage reentered over Indonesia on 31 December, and it was calculated that reentry of the satellite itself would happen on 6 January 1962.

When 6 January 1962 came, the indications were that SAMOS 5 impacted somewhere in northwestern Canada. A US Air Force search party attempted to obtain Canadian permission to search the suspected area, but were unable to explain exactly what they were looking for. The Canadian authorities were suspicious that a B-52 aircraft had accidentally lost a nuclear warhead somewhere, and since this was not an easily resolved matter, the search was called off. Later on, a pair of U-2 reconnaissance aircraft searched the suspected area, but failed to locate any satellite debris. [14]

SAMOS 6

Atlas Agena B with SAMOS 6 Atlas Agena B with SAMOS 6 (Mar. 7, 1962).jpg
Atlas Agena B with SAMOS 6

SAMOS 6 was launched on 7 March 1962 at 19:12:00 GMT, finally had no booster problems, in part due to modifications made to the Agena-B after lessons learned from previous missions, but a series of erroneous ground commands caused the satellite to deplete its attitude control gas. When the Agena stage fired for the deorbit maneuver, SAMOS 6 was launched into a high orbit. In July 1963, fifteen months later, the satellite was on the verge of reentry. With the electrical system dead for months, there was again no chance of an air recovery of the capsule, but it could still survive reentry. However, it was calculated that impact would occur in the Arabian Sea and in all likelihood, the cold ocean water would crack the heat shield and cause it to sink. No attempt was made to recover SAMOS 6, which did apparently land in the Arabian Sea. At this point, the idea of the recoverable capsule was abandoned and the electro-optical system put back into use. It proved no more successful than before and after another five SAMOS launches, the program was terminated.

By the end of 1962, when the last SAMOS satellite flew, only the CORONA program had managed to return usable reconnaissance images. The photos obtained by SAMOS 2 back at the start of 1961 were considered little more than curiosities, their resolution too low for reconnaissance. The Lanyard program had by this time emerged as a successor to SAMOS, and by 1962, CORONA was at last reaching operational status.

In addition, aside program was operated during this period (Program 102) which launched a modified SAMOS on the Thor-Agena B with no cameras at all, but instead electronic monitoring equipment for detecting Soviet missile launches — what could be described as an early ELINT satellite. Four of these were launched from 1962 to 1963 with one failure when the first satellite's Agena-B failed to restart in orbit. The standard SAMOS apparently also carried ELINT subsatellites that remained attached to the Agena-B stage.

Like most early space programs, SAMOS had goals that exceeded what contemporary technology was capable of, and the launch vehicles used to orbit it were nearly as marginal as the satellite itself. Digital photography was not attempted successfully until the KH-11 satellites came online in the late 1970s.

Vehicle missions

From October 1960 to November 1962, at least 11 launch attempts were made. [15] [16] Portions of the program are still considered classified information. It is believed that the program was cancelled because the imagery produced was poor. The program was operated by the United States Air Force, but was overshadowed by the CIA CORONA program.

SAMOS launches [15] [16]
NameLaunch date Mass (kg) Perigee (km) Apogee (km) Inclination NSSDC IDComments
SAMOS 111 October 19601,845------------------------ SAMOS1 A loss of nitrogen gas pressure had disrupted the guidance and control systems at 123 seconds, resulting in poor trajectory and failure to orbit the payload. Tracking telemetry were lost prior to the Agena-A ignition, so the exact trajectory was unknown.
SAMOS 231 January 19611,86047455797.4° 1961-001A First generation photo surveillance; radio relay of images; micrometeoroid impact data. Decayed 21 October 1971.
SAMOS 39 September 19611,890------------------------ SAMOS3 Pad umbilical disconnect 0.21 seconds later than intended. The Atlas lost electrical power and fell back onto the pad, exploding.
SAMOS 422 November 19611,860------------------------ NNN6101 Atlas attitude control failure at T+247 seconds leaving the booster oriented in the wrong direction. The Agena-B could not attain orbital velocity and fell into the Pacific Ocean.
SAMOS 522 December 19611,86024470289.2° 1961-035A Decayed 14 August 1962.
SAMOS 67 March 19621,86025167690.9° 1962-007A Decayed 7 June 1963.
SAMOS 726 April 19621,58820320492.0° 1962-016A Decayed 28 April 1962.
SAMOS 817 June 19621,860------------------------ 1962-023A Decayed 18 June 1962.
SAMOS 918 July 19621,86018423696.1° 1962-030A Decayed 25 July 1962.
SAMOS 105 August 19621,86020520596.3° 1962-035A Decayed 6 August 1962.
SAMOS 1111 November 19621,86020620696,0° 1962-064A Decayed 12 November 1962.

At least two different generations of the satellite were made, and at least four different types of cameras were used. Early on, the idea was to use frame readout cameras that would take a picture and send the scanned image via radio to ground stations on Earth. This system was apparently troublesome, so the program also developed a photographic film return system where the camera and used film would be ejected and be retrieved as it floated down through the atmosphere by parachute. Film-return satellites would remain the standard until the KH-11 satellite with digital imaging capability emerged in the 1970s.

Equipment

SAMOS cameras type and configuration SAMOS satellites.jpg
SAMOS cameras type and configuration

SAMOS satellites used four types of cameras. [15] [16] The E-1 and E-2 cameras used the readout method. Little is known about the E-3 type of camera, which was eventually cancelled. It likely had higher resolution, and may have been superseded by the later E-6. An E-4 camera was initially planned for relatively low-resolution mapmaking purposes, but it was cancelled with the functionality being taken up by the KH-5 (Argon) satellite. The E-5 and E-6 were panoramic format film cameras that appeared in later launches, but only a few were used. The E-5 would later be called upon in the short-lived KH-6 (Lanyard) program.

E-1 camera, particularly the unique system of developing and scanning the film on orbit, was later adopted by Kodak for NASA moon cartographic Lunar Orbiter program. [17]

SAMOS cameras [15] [16]
NameTypeFocal LengthResolutionSwath
E-1readout1.83 m (72 in)30 m (100 ft)161 × 161 km
E-2readout0.91 m (36 in)6 m (20 ft)27 × 27 km
E-5film1.67 m (66 in)1.5 m (5 ft)98 km length
E-6film0.7 m (28 in)2.4 m (8 ft)280 km width

Some satellites were equipped with so-called Ferret devices, for "ferreting" information by spying on electronic communication. A more modern term for that activity would be Signals Intelligence. Toward the end of the program, satellites were only being launched with Ferrets, without any cameras. Two Ferret systems were created, designated F-1 and F-2.

Some additional payloads were sometimes on board, mostly scientific devices for learning more about the space environment so that future satellites could be better-designed for spaceflight. The satellites as launched varied in mass from 1,845 to 1,890 kilograms.

Orbit

SAMOS 2 was the first satellite to enter a Sun-synchronous orbit. [18]

Recovery by Soviets

Section data from Wade [16]

Sergei Khrushchev wrote in his memoirs about the partial recovery of what he believed was a SAMOS satellite, except the date, was the winter before the program started. A second capsule was apparently recovered in early 1961, although the device had been disassembled by local farmers, exposing film and preventing the Soviets from determining the satellite's capabilities. It may or may not have been a SAMOS.

See also

Notes

  1. https://nssdc.gsfc.nasa.gov/nmc/spacecraft/spacecraft/query - type SAMOS in the spacecraft box.
  2. Gerald K. Haines (1997). "Development of the GAMBIT and HEXAGON Satellite Reconnaissance Systems" (PDF). National Reconnaissance Office. Archived from the original (PDF) on 2014-07-13. Retrieved 2011-10-08.
  3. Jonathan McDowell. "The history of spaceflight: SAMOS". Planet4589.org. Retrieved 2007-06-09.
  4. "SAMOS Lockheed Missiles and Space Division (LMSD) Satellite Systems Briefing, Part II, The SAMOS Program" (PDF). Space and Missile Systems Organization Air Force Systems Command. 1959-09-14. Archived from the original (PDF) on 2013-02-24. Retrieved 2011-07-22.
  5. "Chronology of Air Force space activities" (PDF). National Reconnaissance Office. Archived from the original (PDF) on 2011-10-16. Retrieved 2011-07-13.
  6. "Flight Evaluation Report, Atlas 57D Convair October 25, 1960"
  7. "NASA - NSSDCA - Spacecraft - Details".
  8. "National Reconnaissance Office (NRO) history:The SIGINT Satellite Story, 1994 - updated" (PDF). Retrieved November 12, 2022.
  9. "NASA - NSSDCA - Spacecraft - Details".
  10. "NASA - NSSDCA - Experiment - Query Results".
  11. "NASA - NSSDCA - Spacecraft - Details".
  12. "Flight Evaluation Report, Atlas 108D" Convair, December 8, 1961
  13. "NASA - NSSDCA - Spacecraft - Details".
  14. "A History of Satellite Reconnaissance - Volume IIB - SAMOS E-5 AND E-6" (PDF). Archived from the original (PDF) on 2015-12-23. Retrieved 2017-02-23.
  15. 1 2 3 4 Zianet.com The High Ground - SAMOS Archived 2007-05-21 at the Wayback Machine
  16. 1 2 3 4 5 Wade, Mark, Encyclopedia Astronautica Samos Archived 2010-01-16 at the Wayback Machine
  17. "Archived copy" (PDF). Archived from the original (PDF) on 2020-04-11. Retrieved 2016-12-05.{{cite web}}: CS1 maint: archived copy as title (link)
  18. Walker, D. M. C., SAMOS 2 (1961 alpha 1): Orbit determination and analysis at 31:2 response (abstract), 02/1980

Related Research Articles

<span class="mw-page-title-main">CORONA (satellite)</span> American reconnaissance satellites (1959–1972)

The Corona program was a series of American strategic reconnaissance satellites produced and operated by the Central Intelligence Agency (CIA) Directorate of Science & Technology with substantial assistance from the U.S. Air Force. The CORONA satellites were used for photographic surveillance of the Soviet Union (USSR), China, and other areas beginning in June 1959 and ending in May 1972.

<span class="mw-page-title-main">RM-81 Agena</span> American rocket upper stage and satellite bus

The RM-81 Agena was an American rocket upper stage and satellite bus which was developed by Lockheed Corporation initially for the canceled WS-117L reconnaissance satellite program. Following the division of WS-117L into SAMOS and Corona for image intelligence, and MIDAS for early warning, the Agena was later used as an upper stage, and an integrated component, for several programs, including Corona reconnaissance satellites and the Agena Target Vehicle used to demonstrate rendezvous and docking during Project Gemini. It was used as an upper stage on the Atlas, Thor, Thorad and Titan IIIB rockets, and considered for others including the Space Shuttle and Atlas V. A total of 365 Agena rockets were launched between February 28, 1959 and February 1987. Only 33 Agenas carried NASA payloads and the vast majority were for DoD programs.

<span class="mw-page-title-main">KH-7 Gambit</span> Series of United States reconnaissance satellites

BYEMAN codenamed GAMBIT, the KH-7 was a reconnaissance satellite used by the United States from July 1963 to June 1967. Like the older CORONA system, it acquired imagery intelligence by taking photographs and returning the undeveloped film to earth. It achieved a typical ground-resolution of 2 ft (0.61 m) to 3 ft (0.91 m). Though most of the imagery from the KH-7 satellites was declassified in 2002, details of the satellite program remained classified until 2011.

Lockheed Martin Space is one of the four major business divisions of Lockheed Martin. It has its headquarters in Littleton, Colorado, with additional sites in Valley Forge, Pennsylvania; Sunnyvale, California; Santa Cruz, California; Huntsville, Alabama; and elsewhere in the United States and United Kingdom. The division currently employs about 20,000 people, and its most notable products are commercial and military satellites, space probes, missile defense systems, NASA's Orion spacecraft, and the Space Shuttle external tank.

<span class="mw-page-title-main">Vandenberg Space Launch Complex 3</span> Launch site at Vandenberg Space Force Base in California

Space Launch Complex 3 (SLC-3) is a launch site at Vandenberg Space Force Base that consists of two separate launch pads. SLC-3E (East) was used by the Atlas V launch vehicle before it was decommissioned in August 2021 with the final launch taking place on November 10,2022 at 09:49, while SLC-3W (West) has been demolished.

<span class="mw-page-title-main">Atlas-Agena</span> American expendable launch system

The Atlas-Agena was an American expendable launch system derived from the SM-65 Atlas missile. It was a member of the Atlas family of rockets, and was launched 109 times between 1960 and 1978. It was used to launch the first five Mariner uncrewed probes to the planets Venus and Mars, and the Ranger and Lunar Orbiter uncrewed probes to the Moon. The upper stage was also used as an uncrewed orbital target vehicle for the Gemini crewed spacecraft to practice rendezvous and docking. However, the launch vehicle family was originally developed for the Air Force and most of its launches were classified DoD payloads.

Thor was a US space launch vehicle derived from the PGM-17 Thor intermediate-range ballistic missile. The Thor rocket was the first member of the Delta rocket family of space launch vehicles. The last launch of a direct derivative of the Thor missile occurred in 2018 as the first stage of the final Delta II.

<span class="mw-page-title-main">Discoverer 1</span> American reconnaissance satellite launched in 1959; failed to achieve orbit

Discoverer 1 was the first of a series of satellites which were part of the CORONA reconnaissance satellite program. It was launched on a Thor-Agena A rocket on 28 February 1959 at 21:49:16 GMT from Vandenberg Air Force Base in California. It was a prototype of the KH-1 satellite, but did not contain either a camera or a film capsule. It was the first satellite launched toward the South Pole in an attempt to achieve a polar orbit, but was unsuccessful. A CIA report, later declassified, concluded that "Today, most people believe the Discoverer 1 landed somewhere near the South Pole".

<span class="mw-page-title-main">Missile Defense Alarm System</span> Satellite early warning system

The Missile Defense Alarm System, or MIDAS, was a United States Air Force Air Defense Command system of 12 early-warning satellites that provided limited notice of Soviet intercontinental ballistic missile launches between 1960 and 1966. Originally intended to serve as a complete early-warning system working in conjunction with the Ballistic Missile Early Warning System, cost and reliability concerns limited the project to a research and development role. Three of the system's 12 launches ended in failure, and the remaining nine satellites provided crude infrared early-warning coverage of the Soviet Union until the project was replaced by the Defense Support Program. MiDAS represented one element of the United States's first generation of reconnaissance satellites that also included the Corona and SAMOS series. Though MIDAS failed in its primary role as a system of infrared early-warning satellites, it pioneered the technologies needed in successor systems.

<span class="mw-page-title-main">Discoverer 13</span> American reconnaissance satellite

Discoverer 13 was an American optical reconnaissance satellite launched on 10 Aug 1960 at 20:37:54 GMT. The last of five test flights of the Corona KH-1 spy satellite series, it was the first fully successful flight in the Discoverer series. On 11 Aug, after 17 orbits, the satellite's reentry capsule was recovered in the Pacific Ocean by the Haiti Victory. Its payload, an American flag, was presented to President Eisenhower four days later.

Discoverer 20, also known as KH-5 9014A, was a USAF photographic reconnaissance satellite under the supervision of the National Reconnaissance Office (NRO) which was launched in 1961. Discoverer 20 was the first KH-5 ARGON satellite to be launched.

<span class="mw-page-title-main">Discoverer 18</span> Reconnaissance satellite

Discoverer 18, also known as Corona 9013, was an American optical reconnaissance satellite launched on 7 December 1960 at 20:24:00 GMT. It was the first successful, and the third of ten total Corona KH-2 satellites, based on the Agena-B.

<span class="mw-page-title-main">Discoverer 2</span> American reconnaissance satellite

Discoverer 2 was an American optical reconnaissance satellite launched on 13 April 1959 at 21:18:39 GMT, the second of three test flights of the Corona KH-1 spy satellite series. Discoverer 2 was the first satellite to be stabilized in orbit in all three axes and to be maneuvered on command from the earth. Though it carried no film and thus conducted no surveillance, Discoverer 2 was both the first satellite equipped with a reentry capsule and the first to return a payload from orbit. A timing error caused the reentry capsule to land near the island of Spitzbergen, Norway, rather than Hawaii. A joint US-Norway recovery operation was mounted, but was unsuccessful, and there was fear that the capsule ended in the possession of the Soviet Union. Such claims have never been verified. The flight and loss of Discoverer 2 was the inspiration for the book and film Ice Station Zebra.

<span class="mw-page-title-main">Discoverer 3</span> American reconnaissance satellite

Discoverer 3 was an American optical reconnaissance satellite launched on 3 June 1959 at 20:09:20 GMT, the third of three test flights of the Corona KH-1 spy satellite series. The first Discoverer mission to carry live animal passengers, Discoverer 3 was lost when its carrying Agena-A booster crashed into the Pacific Ocean.

<span class="mw-page-title-main">Discoverer 5</span> Reconnaissance satellite

Discoverer 5, also known as Corona 9002, was an American optical reconnaissance satellite launched on 13 August 1959 at 19:00:08 GMT, the second of ten operational flights of the Corona KH-1 spy satellite series. Though the satellite was successfully orbited, the onboard camera failed within the first orbit, and the film-return capsule failed to deorbit as planned.

<span class="mw-page-title-main">Discoverer 6</span> Reconnaissance satellite

Discoverer 6, also known as Corona 9003, was an American optical reconnaissance satellite launched on 19 August 1959 at 19:24:44 GMT, the third of ten operational flights of the Corona KH-1 spy satellite series. Though the spacecraft was orbited successfully, the onboard camera ceased operating by the second orbit, and the film-return capsule could not be recovered.

<span class="mw-page-title-main">Discoverer 7</span> Reconnaissance satellite

Discoverer 7, also known as Corona 9004, was an American optical reconnaissance satellite launched on 7 November 1959 at 20:28:41 GMT, the fourth of ten operational flights of the Corona KH-1 spy satellite series. Though the satellite was orbited successfully, its film capsule failed to separate from the main satellite.

<span class="mw-page-title-main">Discoverer 8</span> Reconnaissance satellite

Discoverer 8, also known as Corona 9005, was an American optical reconnaissance satellite launched on 20 November 1959 at 19:25:24 GMT, the fifth of ten operational flights of the Corona KH-1 spy satellite series. Overburn by the carrier rocket placed the satellite in a higher apogee, more eccentric orbit than planned, the camera failed to operate, and the film return capsule was lost on reentry after separation from the main satellite on 21 November.

<span class="mw-page-title-main">Discoverer 12</span> Reconnaissance satellite

Discoverer 12 was an American optical reconnaissance satellite launched on 29 June 1960, at 22:00:44 GMT. The fourth of five test flights of the Corona KH-1 spy satellite series was lost when the second stage failed during launch.

<span class="mw-page-title-main">Discoverer 15</span> Reconnaissance satellite of the United States Air Force

Discoverer 15, also known as Corona 9010, was a spy satellite used in the Corona program managed by Advanced Research Projects Agency (ARPA) of the Department of Defense and the United States Air Force. Launched on 13 September 1960, the satellite took reconnaissance photos of the Soviet Union. However, its recoverable film capsule was lost in the Pacific Ocean after reentry outside the recovery zone on 15 September.

References