Digital imaging

Last updated

Digital imaging or digital image acquisition is the creation of a digital representation of the visual characteristics of an object, [1] such as a physical scene or the interior structure of an object. The term is often assumed to imply or include the processing, compression, storage, printing and display of such images. A key advantage of a digital image, versus an analog image such as a film photograph, is the ability to digitally propagate copies of the original subject indefinitely without any loss of image quality.

Contents

Digital imaging can be classified by the type of electromagnetic radiation or other waves whose variable attenuation, as they pass through or reflect off objects, conveys the information that constitutes the image. In all classes of digital imaging, the information is converted by image sensors into digital signals that are processed by a computer and made output as a visible-light image. For example, the medium of visible light allows digital photography (including digital videography) with various kinds of digital cameras (including digital video cameras). X-rays allow digital X-ray imaging (digital radiography, fluoroscopy, and CT), and gamma rays allow digital gamma ray imaging (digital scintigraphy, SPECT, and PET). Sound allows ultrasonography (such as medical ultrasonography) and sonar, and radio waves allow radar. Digital imaging lends itself well to image analysis by software, as well as to image editing (including image manipulation).

History

Before digital imaging, the first photograph ever produced, View from the Window at Le Gras, was in 1826 by Frenchman Joseph Nicéphore Niépce. When Joseph was 28, he was discussing with his brother Claude about the possibility of reproducing images with light. His focus on his new innovations began in 1816. He was in fact more interested in creating an engine for a boat. Joseph and his brother focused on that for quite some time and Claude successfully promoted his innovation moving and advancing him to England. Joseph was able to focus on the photograph and finally in 1826, he was able to produce his first photograph of a view through his window. This took 8 hours or more of exposure to light. [2]

The first digital image was produced in 1920, by the Bartlane cable picture transmission system. British inventors, Harry G. Bartholomew and Maynard D. McFarlane, developed this method. The process consisted of "a series of negatives on zinc plates that were exposed for varying lengths of time, thus producing varying densities". [3] The Bartlane cable picture transmission system generated at both its transmitter and its receiver end a punched data card or tape that was recreated as an image. [4]

In 1957, Russell A. Kirsch produced a device that generated digital data that could be stored in a computer; this used a drum scanner and photomultiplier tube. [3]

Digital imaging was developed in the 1960s and 1970s, largely to avoid the operational weaknesses of film cameras, for scientific and military missions including the KH-11 program. As digital technology became cheaper in later decades, it replaced the old film methods for many purposes.

In the early 1960s, while developing compact, lightweight, portable equipment for the onboard nondestructive testing of naval aircraft, Frederick G. Weighart [5] and James F. McNulty (U.S. radio engineer) [6] at Automation Industries, Inc., then, in El Segundo, California co-invented the first apparatus to generate a digital image in real-time, which image was a fluoroscopic digital radiograph. Square wave signals were detected on the fluorescent screen of a fluoroscope to create the image.

Digital image sensors

The charge-coupled device was invented by Willard S. Boyle and George E. Smith at Bell Labs in 1969. [7] While researching MOS technology, they realized that an electric charge was the analogy of the magnetic bubble and that it could be stored on a tiny MOS capacitor. As it was fairly straightforward to fabricate a series of MOS capacitors in a row, they connected a suitable voltage to them so that the charge could be stepped along from one to the next. [8] The CCD is a semiconductor circuit that was later used in the first digital video cameras for television broadcasting. [9]

Early CCD sensors suffered from shutter lag. This was largely resolved with the invention of the pinned photodiode (PPD). [10] It was invented by Nobukazu Teranishi, Hiromitsu Shiraki and Yasuo Ishihara at NEC in 1980. [10] [11] It was a photodetector structure with low lag, low noise, high quantum efficiency and low dark current. [10] In 1987, the PPD began to be incorporated into most CCD devices, becoming a fixture in consumer electronic video cameras and then digital still cameras. Since then, the PPD has been used in nearly all CCD sensors and then CMOS sensors. [10]

The NMOS active-pixel sensor (APS) was invented by Olympus in Japan during the mid-1980s. This was enabled by advances in MOS semiconductor device fabrication, with MOSFET scaling reaching smaller micron and then sub-micron levels. [12] [13] The NMOS APS was fabricated by Tsutomu Nakamura's team at Olympus in 1985. [14] The CMOS active-pixel sensor (CMOS sensor) was later developed by Eric Fossum's team at the NASA Jet Propulsion Laboratory in 1993. [10] By 2007, sales of CMOS sensors had surpassed CCD sensors. [15]

Digital image compression

An important development in digital image compression technology was the discrete cosine transform (DCT). [16] DCT compression is used in JPEG, which was introduced by the Joint Photographic Experts Group in 1992. [17] JPEG compresses images down to much smaller file sizes, and has become the most widely used image file format on the Internet. [18]

Digital cameras

These different scanning ideas were the basis of the first designs of digital camera. Early cameras took a long time to capture an image and were poorly suited for consumer purposes. [3] It was not until the adoption of the CCD (charge-coupled device) that the digital camera really took off. The CCD became part of the imaging systems used in telescopes, the first black-and-white digital cameras in the 1980s. [3] Color was eventually added to the CCD and is a usual feature of cameras today.

Changing environment

Great strides have been made in the field of digital imaging. Negatives and exposure are foreign concepts to many, and the first digital image in 1920 led eventually to cheaper equipment, increasingly powerful yet simple software, and the growth of the Internet. [19]

The constant advancement and production of physical equipment and hardware related to digital imaging has affected the environment surrounding the field. From cameras and webcams to printers and scanners, the hardware is becoming sleeker, thinner, faster, and cheaper. As the cost of equipment decreases, the market for new enthusiasts widens, allowing more consumers to experience the thrill of creating their own images.

Everyday personal laptops, family desktops, and company computers are able to handle photographic software. Our computers are more powerful machines with increasing capacities for running programs of any kind—especially digital imaging software. And that software is quickly becoming both smarter and simpler. Although functions on today's programs reach the level of precise editing and even rendering 3-D images, user interfaces are designed to be friendly to advanced users as well as first-time fans.

The Internet allows editing, viewing, and sharing digital photos and graphics. A quick browse around the web can easily turn up graphic artwork from budding artists, news photos from around the world, corporate images of new products and services, and much more. The Internet has clearly proven itself a catalyst in fostering the growth of digital imaging.

Online photo sharing of images changes the way we understand photography and photographers. Online sites such as Flickr, Shutterfly, and Instagram give billions the capability to share their photography, whether they are amateurs or professionals. Photography has gone from being a luxury medium of communication and sharing to more of a fleeting moment in time. Subjects have also changed. Pictures used to be primarily taken of people and family. Now, we take them of anything. We can document our day and share it with everyone with the touch of our fingers. [20]

In 1826 Niepce was the first to develop a photo which used lights to reproduce images, the advancement of photography has drastically increased over the years. Everyone is now a photographer in their own way, whereas during the early 1800s and 1900s the expense of lasting photos was highly valued and appreciated by consumers and producers. According to the magazine article on five ways digital camera changed us states the following:The impact on professional photographers has been dramatic. Once upon a time a photographer wouldn't dare waste a shot unless they were virtually certain it would work."The use of digital imaging( photography) has changed the way we interacted with our environment over the years. Part of the world is experienced differently through visual imagining of lasting memories, it has become a new form of communication with friends, family and love ones around the world without face to face interactions. Through photography it is easy to see those that you have never seen before and feel their presence without them being around, for example Instagram is a form of social media where anyone is allowed to shoot, edit, and share photos of whatever they want with friends and family. Facebook, snapshot, vine and twitter are also ways people express themselves with little or no words and are able to capture every moment that is important. Lasting memories that were hard to capture, is now easy because everyone is now able to take pictures and edit it on their phones or laptops. Photography has become a new way to communicate and it is rapidly increasing as time goes by, which has affected the world around us. [21]

A study done by Basey, Maines, Francis, and Melbourne found that drawings used in class have a significant negative effect on lower-order content for student's lab reports, perspectives of labs, excitement, and time efficiency of learning. Documentation style learning has no significant effects on students in these areas. He also found that students were more motivated and excited to learn when using digital imaging. [22]

Field advancements

In the field of education.

The field of medical imaging

In the field of technology, digital image processing has become more useful than analog image processing when considering the modern technological advancement.

Augmented reality

Digital Imaging for Augmented Reality (DIAR) is a comprehensive field within the broader context of Augmented Reality (AR) technologies. It involves the creation, manipulation, and interpretation of digital images for use in augmented reality environments. DIAR plays a significant role in enhancing the user experience, providing realistic overlays of digital information onto the real world, thereby bridging the gap between the physical and the virtual realms. [27] [28]

DIAR is employed in numerous sectors including entertainment, education, healthcare, military, and retail. In entertainment, DIAR is used to create immersive gaming experiences and interactive movies. In education, it provides a more engaging learning environment, while in healthcare, it assists in complex surgical procedures. The military uses DIAR for training purposes and battlefield visualization. In retail, customers can virtually try on clothes or visualize furniture in their home before making a purchase. [29]

With continuous advancements in technology, the future of DIAR is expected to witness more realistic overlays, improved 3D object modeling, and seamless integration with the Internet of Things (IoT). The incorporation of haptic feedback in DIAR systems could further enhance the user experience by adding a sense of touch to the visual overlays. Additionally, advancements in artificial intelligence and machine learning are expected to further improve the context-appropriateness and realism of the overlaid digital images. [30]

Theoretical application

Although theories are quickly becoming realities in today's technological society, the range of possibilities for digital imaging is wide open. One major application that is still in the works is that of child safety and protection. How can we use digital imaging to better protect our kids? Kodak's program, Kids Identification Digital Software (KIDS) may answer that question. The beginnings include a digital imaging kit to be used to compile student identification photos, which would be useful during medical emergencies and crimes. More powerful and advanced versions of applications such as these are still developing, with increased features constantly being tested and added. [31]

But parents and schools aren't the only ones who see benefits in databases such as these. Criminal investigation offices, such as police precincts, state crime labs, and even federal bureaus have realized the importance of digital imaging in analyzing fingerprints and evidence, making arrests, and maintaining safe communities. As the field of digital imaging evolves, so does our ability to protect the public. [32]

Digital imaging can be closely related to the social presence theory especially when referring to the social media aspect of images captured by our phones. There are many different definitions of the social presence theory but two that clearly define what it is would be "the degree to which people are perceived as real" (Gunawardena, 1995), and "the ability to project themselves socially and emotionally as real people" (Garrison, 2000). Digital imaging allows one to manifest their social life through images in order to give the sense of their presence to the virtual world. The presence of those images acts as an extension of oneself to others, giving a digital representation of what it is they are doing and who they are with. Digital imaging in the sense of cameras on phones helps facilitate this effect of presence with friends on social media. Alexander (2012) states, "presence and representation is deeply engraved into our reflections on images...this is, of course, an altered presence...nobody confuses an image with the representation reality. But we allow ourselves to be taken in by that representation, and only that 'representation' is able to show the liveliness of the absentee in a believable way." Therefore, digital imaging allows ourselves to be represented in a way so as to reflect our social presence. [33]

Photography is a medium used to capture specific moments visually. Through photography our culture has been given the chance to send information (such as appearance) with little or no distortion. The Media Richness Theory provides a framework for describing a medium's ability to communicate information without loss or distortion. This theory has provided the chance to understand human behavior in communication technologies. The article written by Daft and Lengel (1984,1986) states the following:

Communication media fall along a continuum of richness. The richness of a medium comprises four aspects: the availability of instant feedback, which allows questions to be asked and answered; the use of multiple cues, such as physical presence, vocal inflection, body gestures, words, numbers and graphic symbols; the use of natural language, which can be used to convey an understanding of a broad set of concepts and ideas; and the personal focus of the medium (pp. 83).

The more a medium is able to communicate the accurate appearance, social cues and other such characteristics the more rich it becomes. Photography has become a natural part of how we communicate. For example, most phones have the ability to send pictures in text messages. Apps Snapchat and Vine have become increasingly popular for communicating. Sites like Instagram and Facebook have also allowed users to reach a deeper level of richness because of their ability to reproduce information. Sheer, V. C. (January–March 2011). Teenagers' use of MSN features, discussion topics, and online friendship development: the impact of media richness and communication control. Communication Quarterly, 59(1).

Methods

A digital photograph may be created directly from a physical scene by a camera or similar device. Alternatively, a digital image may be obtained from another image in an analog medium, such as photographs, photographic film, or printed paper, by an image scanner or similar device. Many technical images—such as those acquired with tomographic equipment, side-scan sonar, or radio telescopes—are actually obtained by complex processing of non-image data. Weather radar maps as seen on television news are a commonplace example. The digitalization of analog real-world data is known as digitizing, and involves sampling (discretization) and quantization. Projectional imaging of digital radiography can be done by X-ray detectors that directly convert the image to digital format. Alternatively, phosphor plate radiography is where the image is first taken on a photostimulable phosphor (PSP) plate which is subsequently scanned by a mechanism called photostimulated luminescence.

Finally, a digital image can also be computed from a geometric model or mathematical formula. In this case, the name image synthesis is more appropriate, and it is more often known as rendering.

Digital image authentication is an issue [34] for the providers and producers of digital images such as health care organizations, law enforcement agencies, and insurance companies. There are methods emerging in forensic photography to analyze a digital image and determine if it has been altered.

Previously digital imaging depended on chemical and mechanical processes, now all these processes have converted to electronic. A few things need to take place for digital imaging to occur, the light energy converts to electrical energy – think of a grid with millions of little solar cells. Each condition generates a specific electrical charge. Charges for each of these "solar cells" are transported and communicated to the firmware to be interpreted. The firmware is what understands and translates the color and other light qualities. Pixels are what is noticed next, with varying intensities they create and cause different colors, creating a picture or image. Finally, the firmware records the information for a future date and for reproduction.

Advantages

There are several benefits of digital imaging. First, the process enables easy access of photographs and word documents. Google is at the forefront of this 'revolution,' with its mission to digitize the world's books. Such digitization will make the books searchable, thus making participating libraries, such as Stanford University and the University of California Berkeley, accessible worldwide. [35] Digital imaging also benefits the medical world because it "allows the electronic transmission of images to third-party providers, referring dentists, consultants, and insurance carriers via a modem". [35] The process "is also environmentally friendly since it does not require chemical processing". [35] Digital imaging is also frequently used to help document and record historical, scientific and personal life events. [36]

Benefits also exist regarding photographs. Digital imaging will reduce the need for physical contact with original images. [37] Furthermore, digital imaging creates the possibility of reconstructing the visual contents of partially damaged photographs, thus eliminating the potential that the original would be modified or destroyed. [37] In addition, photographers will be "freed from being 'chained' to the darkroom," will have more time to shoot and will be able to cover assignments more effectively. [38] Digital imaging 'means' that "photographers no longer have to rush their film to the office, so they can stay on location longer while still meeting deadlines". [39]

Another advantage to digital photography is that it has been expanded to camera phones. We are able to take cameras with us wherever as well as send photos instantly to others. It is easy for people to us as well as help in the process of self-identification for the younger generation [40]

Criticisms

Critics of digital imaging cite several negative consequences. An increased "flexibility in getting better quality images to the readers" will tempt editors, photographers and journalists to manipulate photographs. [38] In addition, "staff photographers will no longer be photojournalists, but camera operators... as editors have the power to decide what they want 'shot'". [38]

See also

Related Research Articles

<span class="mw-page-title-main">Charge-coupled device</span> Device for the movement of electrical charge

A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging.

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a semiconductor diode sensitive to photon radiation, such as visible light, infrared or ultraviolet radiation, X-rays and gamma rays. Photodiode is a PN semiconductor material that produces current or voltage Photovoltaics when it absorbs photons Semiconductor Optoelectronics . The physics of electron excitation for photodiodes are similar to Photoconductivity typically implemented as a Photoresistor or as switches in Thyristor#Photothyristors. Photodiodes can be used for detection and measurement applications, or optimized for the generation of electrical power in solar cells. Photodiodes are used in a wide range of applications throughout the electromagnetic spectrum from IR, visible light, UV photocells to gamma ray spectrometers.

<span class="mw-page-title-main">Camera</span> Optical device for recording images

A camera is an instrument used to capture and store images and videos, either digitally via an electronic image sensor, or chemically via a light-sensitive material such as photographic film. As a pivotal technology in the fields of photography and videography, cameras have played a significant role in the progression of visual arts, media, entertainment, surveillance, and scientific research. The invention of the camera dates back to the 19th century and has since evolved with advancements in technology, leading to a vast array of types and models in the 21st century.

<span class="mw-page-title-main">Digital camera</span> Camera that captures photographs or video in digital format

A digital camera, also called a digicam, is a camera that captures photographs in digital memory. Most cameras produced today are digital, largely replacing those that capture images on photographic film. Digital cameras are now widely incorporated into mobile devices like smartphones with the same or more capabilities and features of dedicated cameras. High-end, high-definition dedicated cameras are still commonly used by professionals and those who desire to take higher-quality photographs.

Digital image processing is the use of a digital computer to process digital images through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions digital image processing may be modeled in the form of multidimensional systems. The generation and development of digital image processing are mainly affected by three factors: first, the development of computers; second, the development of mathematics ; third, the demand for a wide range of applications in environment, agriculture, military, industry and medical science has increased.

<span class="mw-page-title-main">Astrophotography</span> Imaging of astronomical objects

Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object was taken in 1840, but it was not until the late 19th century that advances in technology allowed for detailed stellar photography. Besides being able to record the details of extended objects such as the Moon, Sun, and planets, modern astrophotography has the ability to image objects outside of the visible spectrum of the human eye such as dim stars, nebulae, and galaxies. This is accomplished through long time exposure as both film and digital cameras can accumulate and sum photons over long periods of time or using specialized optical filters which limit the photons to a certain wavelength.

<span class="mw-page-title-main">Sensor</span> Converter that measures a physical quantity and converts it into a signal

A sensor is a device that produces an output signal for the purpose of detecting a physical phenomenon.

<span class="mw-page-title-main">Color photography</span> Photography that reproduces colors

Color photography is a type of photography that uses media capable of capturing and reproducing colors. By contrast, black-and-white or gray-monochrome photography records only a single channel of luminance (brightness) and uses media capable only of showing shades of gray.

<span class="mw-page-title-main">Video camera</span> Camera used for electronic motion picture acquisition

A video camera is an optical instrument that captures videos, as opposed to a movie camera, which records images on film. Video cameras were initially developed for the television industry but have since become widely used for a variety of other purposes.

A digital image is an image composed of picture elements, also known as pixels, each with finite, discrete quantities of numeric representation for its intensity or gray level that is an output from its two-dimensional functions fed as input by its spatial coordinates denoted with x, y on the x-axis and y-axis, respectively. Depending on whether the image resolution is fixed, it may be of vector or raster type. By itself, the term "digital image" usually refers to raster images or bitmapped images.

<span class="mw-page-title-main">Digital camera back</span> Digital image sensor that attaches to the back of a film camera

A digital camera back is a device that attaches to the back of a camera in place of the traditional negative film holder and contains an electronic image sensor. This allows cameras that were designed to use film take digital photographs. These camera backs are generally expensive by consumer standards and are primarily built to be attached on medium- and large-format cameras used by professional photographers.

In photography, shutter lag is the delay between triggering the shutter and when the photograph is actually recorded. This is a common problem in the photography of fast-moving objects or animals and people in motion. The term narrowly refers only to shutter effects, but more broadly refers to all lag between when the shutter button is pressed and when the photo is taken, including metering and focus lag.

<span class="mw-page-title-main">Digital cinematography</span> Digital image capture for film

Digital cinematography is the process of capturing (recording) a motion picture using digital image sensors rather than through film stock. As digital technology has improved in recent years, this practice has become dominant. Since the mid-2010s, most movies across the world are captured as well as distributed digitally.

<span class="mw-page-title-main">History of the camera</span> Review of the topic

The history of the camera began even before the introduction of photography. Cameras evolved from the camera obscura through many generations of photographic technology – daguerreotypes, calotypes, dry plates, film – to the modern day with digital cameras and camera phones.

<span class="mw-page-title-main">High-speed photography</span> Photography genre

High-speed photography is the science of taking pictures of very fast phenomena. In 1948, the Society of Motion Picture and Television Engineers (SMPTE) defined high-speed photography as any set of photographs captured by a camera capable of 69 frames per second or greater, and of at least three consecutive frames. High-speed photography can be considered to be the opposite of time-lapse photography.

<span class="mw-page-title-main">Digital photography</span> Photography with a digital camera

Digital photography uses cameras containing arrays of electronic photodetectors interfaced to an analog-to-digital converter (ADC) to produce images focused by a lens, as opposed to an exposure on photographic film. The digitized image is stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. It is a form of digital imaging based on gathering visible light.

<span class="mw-page-title-main">Image sensor</span> Device that converts images into electronic signals

An image sensor or imager is a sensor that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

<span class="mw-page-title-main">Active-pixel sensor</span> Image sensor, consisting of an integrated circuit

An active-pixel sensor (APS) is an image sensor, which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for cells.

Eric R. Fossum is an Emmy award-winning American engineer and professor, who co-developed some of the active pixel image sensor with intra-pixel charge transfer, with the help of other scientists from the NASA Jet Propulsion Laboratory. He is currently a professor at Thayer School of Engineering in Dartmouth College.

<span class="mw-page-title-main">Rolling shutter</span> Image capture method

Rolling shutter is a method of image capture in which a still picture or each frame of a video is captured not by taking a snapshot of the entire scene at a single instant in time but rather by scanning across the scene rapidly, vertically, horizontally or rotationally. In other words, not all parts of the image of the scene are recorded at exactly the same instant. This produces predictable distortions of fast-moving objects or rapid flashes of light. This is in contrast with "global shutter" in which the entire frame is captured at the same instant.

References

  1. Federal Agencies Digital Guidelines Initiative Glossary
  2. Brown, Barbara N. (November 2002). "GCI/HRC Research World's First Photograph". Abbey Newsletter. Vol. 26, no. 3. Archived from the original on 2019-08-03.
  3. 1 2 3 4 Trussell H &Vrhel M (2008). "Introduction". Fundamental of Digital Imaging: 1–6.
  4. "The Birth of Digital Phototelegraphy", the papers of Technical Meeting in History of Electrical Engineering IEEE, Vol. HEE-03, No. 9-12, pp 7-12 (2003)
  5. U.S. Patent 3,277,302, titled "X-Ray Apparatus Having Means for Supplying An Alternating Square Wave Voltage to the X-Ray Tube", granted to Weighart on October 4, 1964, showing its patent application date as May 10, 1963 and at lines 1-6 of its column 4, also, noting James F. McNulty's earlier filed co-pending application for an essential component of invention
  6. U.S. Patent 3,289,000, titled "Means for Separately Controlling the Filament Current and Voltage on a X-Ray Tube", granted to McNulty on November 29, 1966 and showing its patent application date as March 5, 1963
  7. James R. Janesick (2001). Scientific charge-coupled devices. SPIE Press. pp. 3–4. ISBN   978-0-8194-3698-6.
  8. Williams, J. B. (2017). The Electronics Revolution: Inventing the Future. Springer. pp. 245–8. ISBN   978-3-319-49088-5.
  9. Boyle, William S; Smith, George E. (1970). "Charge Coupled Semiconductor Devices". Bell Syst. Tech. J. 49 (4): 587–593. Bibcode:1970BSTJ...49..587B. doi:10.1002/j.1538-7305.1970.tb01790.x.
  10. 1 2 3 4 5 Fossum, Eric R.; Hondongwa, D. B. (2014). "A Review of the Pinned Photodiode for CCD and CMOS Image Sensors". IEEE Journal of the Electron Devices Society. 2 (3): 33–43. doi: 10.1109/JEDS.2014.2306412 .
  11. U.S. Patent 4,484,210: Solid-state imaging device having a reduced image lag
  12. Fossum, Eric R. (12 July 1993). Blouke, Morley M. (ed.). "Active pixel sensors: are CCDs dinosaurs?". SPIE Proceedings Vol. 1900: Charge-Coupled Devices and Solid State Optical Sensors III. Charge-Coupled Devices and Solid State Optical Sensors III. International Society for Optics and Photonics. 1900: 2–14. Bibcode:1993SPIE.1900....2F. CiteSeerX   10.1.1.408.6558 . doi:10.1117/12.148585. S2CID   10556755.
  13. Fossum, Eric R. (2007). "Active Pixel Sensors" (PDF). Eric Fossum. S2CID   18831792.
  14. Matsumoto, Kazuya; et al. (1985). "A new MOS phototransistor operating in a non-destructive readout mode". Japanese Journal of Applied Physics. 24 (5A): L323. Bibcode:1985JaJAP..24L.323M. doi:10.1143/JJAP.24.L323. S2CID   108450116.
  15. "CMOS Image Sensor Sales Stay on Record-Breaking Pace". IC Insights. May 8, 2018. Retrieved 6 October 2019.
  16. Ahmed, Nasir (January 1991). "How I Came Up With the Discrete Cosine Transform". Digital Signal Processing . 1 (1): 4–5. doi:10.1016/1051-2004(91)90086-Z.
  17. "T.81 – DIGITAL COMPRESSION AND CODING OF CONTINUOUS-TONE STILL IMAGES – REQUIREMENTS AND GUIDELINES" (PDF). CCITT. September 1992. Retrieved 12 July 2019.
  18. "The JPEG image format explained". BT.com . BT Group. 31 May 2018. Retrieved 5 August 2019.
  19. Reed, Mike (2002). "Graphic arts, digital imaging and technology education". T H e Journal. 21 (5): 69+. Retrieved 28 June 2012.(subscription required)
  20. Murray, Susan (August 2008). "Digital Images, Photo-Sharing, and Our Shifting Notions of Everyday Aesthetics". Journal of Visual Culture. 7 (2): 147–163. doi:10.1177/1470412908091935. S2CID   194064049.(subscription required)
  21. Castella, T. D. (2012, 1, 12). Five ways the digital camera changed us. BBC.
  22. "Impacts of Digital Imaging versus Drawing on Student Learning in Undergraduate Biodiversity Labs" (PDF). eric.ed.gov. Retrieved 22 December 2016.
  23. Richardson, Ronny (2003). "Digital imaging: The wave of the future". T H e Journal. 31 (3). Retrieved 28 June 2012.
  24. Reed, Mike (2002). "Graphic arts, digital imaging and technology education". T H e Journal. 21 (5): 69+. Retrieved 28 June 2012.
  25. Bachur, R. G.; Hennelly, K.; Callahan, M. J.; Chen, C.; Monuteaux, M. C. (2012). "Diagnostic Imaging and Negative Appendectomy Rates in Children: Effects of Age and Gender". Pediatrics. 129 (5): 877–884. doi:10.1542/peds.2011-3375. PMID   22508920. S2CID   18881885.
  26. Planykh, Oleg, S. (2009). Digital Imaging in Communications in Medicine: A Practical Introduction and Survival Guide. Boston, Mass.: Springer. pp. 3–5. ISBN   978-3-642-10849-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  27. Lui, Tsz-Wai (2020). Augmented reality and virtual reality: Changing realities in a dynamic world. Cham. ISBN   978-3-030-37868-4.
  28. Prodromou, Theodosia (2020-01-01). Augmented Reality in Educational Settings. BRILL. doi:10.1163/9789004408845. ISBN   978-90-04-40883-8. S2CID   226667545.
  29. Piroozfar, Poorang (2018). The application of Augmented Reality (AR) in the Architecture Engineering and Construction (AEC) industry.
  30. Huang, Weidong (2012). Human Factors in Augmented Reality Environments. Springer Science & Business Media.
  31. Willis, William (1997). "Digital imaging is innovative, useful, and now within educators' reach". T H e Journal. 25 (2): 24+. Retrieved 28 June 2012.
  32. Cherry, Michael; Edward Imwinkelried (2006). "A cautionary note about fingerprint analysis and reliance on digital technology". Judicature. 89 (6): 334+. Retrieved 28 June 2012.
  33. Alexander, J. C. (2012). Iconic Power: Materiality and meaning in social life. New York: Palgrave Macmillan.
  34. "Digital image authentication for evidence" (PDF). Archived from the original (PDF) on 2016-03-07. Retrieved 2011-03-05.
  35. 1 2 3 Michels, S. (December 30, 2009). "Google's Goal: Digitize Every Book Ever Printed". PBS Newshour. Archived from the original on 29 September 2012. Retrieved 2 October 2012.
  36. Gustavson, T. (2009). Camera: A history of photography from daguerreotype to digital. New York: Sterling Innovation.
  37. 1 2 Frey S (1999). "Digital Imaging as a Tool for Preservation". IADA Preprints: 191–4.
  38. 1 2 3 Parker D (1988). "Ethical Implications of Electronic Still Cameras and Computer Digital Imaging in the Print Media". Journal of the Mass Media. 3 (2): 47–59. doi:10.1080/08900528809358322.
  39. Fahmy S, Smith CZ (2003). "Photographers Note Digital's Advantages, Disadvantages". Newspaper Research Journal. 24 (2): 82–96. doi:10.1177/073953290302400206. S2CID   107853874.
  40. Gai, B. (2009). "A World Through the Camera Phone Lens: A Case Study of Beijing Camera Phone Use". Knowledge, Technology & Policy. 22 (3): 195–204. doi:10.1007/s12130-009-9084-x. S2CID   109060999.