Image retrieval

Last updated

An image retrieval system is a computer system used for browsing, searching and retrieving images from a large database of digital images. Most traditional and common methods of image retrieval utilize some method of adding metadata such as captioning, keywords, title or descriptions to the images so that retrieval can be performed over the annotation words. Manual image annotation is time-consuming, laborious and expensive; to address this, there has been a large amount of research done on automatic image annotation. Additionally, the increase in social web applications and the semantic web have inspired the development of several web-based image annotation tools.

Contents

The first microcomputer-based image database retrieval system was developed at MIT, in the 1990s, by Banireddy Prasaad, Amar Gupta, Hoo-min Toong, and Stuart Madnick. [1]

A 2008 survey article documented progresses after 2007. [2]

All image retrieval systems as of 2021 were designed for 2D images, not 3D ones.

Search methods

Image search is a specialized data search used to find images. To search for images, a user may provide query terms such as keyword, image file/link, or click on some image, and the system will return images "similar" to the query. The similarity used for search criteria could be meta tags, color distribution in images, region/shape attributes, etc.

Data scope

It is crucial to understand the scope and nature of image data in order to determine the complexity of image search system design. The design is also largely influenced by factors such as the diversity of user-base and expected user traffic for a search system. Along this dimension, search data can be classified into the following categories:

Evaluations

There are evaluation workshops for image retrieval systems aiming to investigate and improve the performance of such systems.

See also

Related Research Articles

Information retrieval (IR) in computing and information science is the process of obtaining information system resources that are relevant to an information need from a collection of those resources. Searches can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.

Music information retrieval (MIR) is the interdisciplinary science of retrieving information from music. Those involved in MIR may have a background in academic musicology, psychoacoustics, psychology, signal processing, informatics, machine learning, optical music recognition, computational intelligence or some combination of these.

<span class="mw-page-title-main">Content-based image retrieval</span> Method of image retrieval

Content-based image retrieval, also known as query by image content (QBIC) and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases. Content-based image retrieval is opposed to traditional concept-based approaches.

<span class="mw-page-title-main">Automatic image annotation</span>

Automatic image annotation is the process by which a computer system automatically assigns metadata in the form of captioning or keywords to a digital image. This application of computer vision techniques is used in image retrieval systems to organize and locate images of interest from a database.

<span class="mw-page-title-main">Tag cloud</span> Visual representation of word frequency

A tag cloud is a visual representation of text data which is often used to depict keyword metadata on websites, or to visualize free form text. Tags are usually single words, and the importance of each tag is shown with font size or color. When used as website navigation aids, the terms are hyperlinked to items associated with the tag.

A video search engine is a web-based search engine which crawls the web for video content. Some video search engines parse externally hosted content while others allow content to be uploaded and hosted on their own servers. Some engines also allow users to search by video format type and by length of the clip. The video search results are usually accompanied by a thumbnail view of the video.

Search Engine Results Pages (SERP) are the pages displayed by search engines in response to a query by a user. The main component of the SERP is the listing of results that are returned by the search engine in response to a keyword query.

<span class="mw-page-title-main">Image organizer</span> Software for organising digital images

An image organizer or image management application is application software for organising digital images. It is a kind of desktop organizer software application.

<span class="mw-page-title-main">Google Images</span> Image search engine by Google Inc.

Google Images is a search engine owned by Google that allows users to search the World Wide Web for images. It was introduced on July 12, 2001, due to a demand for pictures of the green Versace dress of Jennifer Lopez worn in February 2000. In 2011, reverse image search functionality was added.

Image meta search is a type of search engine specialised on finding pictures, images, animations etc. Like the text search, image search is an information retrieval system designed to help to find information on the Internet and it allows the user to look for images etc. using keywords or search phrases and to receive a set of thumbnail images, sorted by relevancy.

AXMEDIS is a set of European Union digital content standards, initially created as a research project running from 2004 to 2008 partially supported by the European Commission under the Information Society Technologies programme of the Sixth Framework Programme (FP6). It stands for "Automating Production of Cross Media Content for Multi-channel Distribution". Now it is distributed as a framework, and is still being maintained and improved. A large part of the framework is under open source licensing. The AXMEDIS framework includes a set of tools, models, test cases, documents, etc. supporting the production and distribution of cross media content.

An audio search engine is a web-based search engine which crawls the web for audio content. The information can consist of web pages, images, audio files, or another type of document. Various techniques exist for research on these engines.

A concept search is an automated information retrieval method that is used to search electronically stored unstructured text for information that is conceptually similar to the information provided in a search query. In other words, the ideas expressed in the information retrieved in response to a concept search query are relevant to the ideas contained in the text of the query.

<span class="mw-page-title-main">Metadata</span> Data about data

Metadata is "data that provides information about other data", but not the content of the data itself, such as the text of a message or the image itself. There are many distinct types of metadata, including:

A selection-based search system is a search engine system in which the user invokes a search query using only the mouse. A selection-based search system allows the user to search the internet for more information about any keyword or phrase contained within a document or webpage in any software application on their desktop computer using the mouse.

<span class="mw-page-title-main">Global Memory Net</span>

Global Memory Net (GMNet) is a world digital library of cultural, historical, and heritage image collections. It is directed by Ching-chih Chen, Professor Emeritus of Simmons College, Boston, Massachusetts and supported by the National Science Foundation (NSF)'s International Digital Library Program (IDLP). The goal of GMNet is to provide a global collaborative network that provides universal access to educational resources to a worldwide audience. GMNet provides multilingual and multimedia content and retrieval, as well as links directly to major resources, such as OCLC, Internet Archive, Million Book Project, and Google.

TinEye is a reverse image search engine developed and offered by Idée, Inc., a company based in Toronto, Ontario, Canada. It is the first image search engine on the web to use image identification technology rather than keywords, metadata or watermarks. TinEye allows users to search not using keywords but with images. Upon submitting an image, TinEye creates a "unique and compact digital signature or fingerprint" of the image and matches it with other indexed images. This procedure is able to match even heavily edited versions of the submitted image, but will not usually return similar images in the results.

<span class="mw-page-title-main">Reverse image search</span> Content-based image retrieval

Reverse image search is a content-based image retrieval (CBIR) query technique that involves providing the CBIR system with a sample image that it will then base its search upon; in terms of information retrieval, the sample image is very useful. In particular, reverse image search is characterized by a lack of search terms. This effectively removes the need for a user to guess at keywords or terms that may or may not return a correct result. Reverse image search also allows users to discover content that is related to a specific sample image or the popularity of an image, and to discover manipulated versions and derivative works.

Image collection exploration is a mechanism to explore large digital image repositories. The huge amount of digital images produced every day through different devices such as mobile phones bring forth challenges for the storage, indexing and access to these repositories. Content-based image retrieval (CBIR) has been the traditional paradigm to index and retrieve images. However, this paradigm suffers of the well known semantic gap problem. Image collection exploration consists of a set of computational methods to represent, summarize, visualize and navigate image repositories in an efficient, effective and intuitive way.

BisQue is a free, open source web-based platform for the exchange and exploration of large, complex datasets. It is being developed at the Vision Research Lab at the University of California, Santa Barbara. BisQue specifically supports large scale, multi-dimensional multimodal-images and image analysis. Metadata is stored as arbitrarily nested and linked tag/value pairs, allowing for domain-specific data organization. Image analysis modules can be added to perform complex analysis tasks on compute clusters. Analysis results are stored within the database for further querying and processing. The data and analysis provenance is maintained for reproducibility of results. BisQue can be easily deployed in cloud computing environments or on computer clusters for scalability. BisQue has been integrated into the NSF Cyberinfrastructure project CyVerse. The user interacts with BisQue via any modern web browser.

References

  1. B E Prasad; A Gupta; H-M Toong; S.E. Madnick (February 1987). "A microcomputer-based image database management system" (PDF). IEEE Transactions on Industrial Electronics. IE-34 (1): 83–8. doi:10.1109/TIE.1987.350929. S2CID   24543386.
  2. Datta, Ritendra; Dhiraj Joshi; Jia Li; James Z. Wang (April 2008). "Image Retrieval: Ideas, Influences, and Trends of the New Age". ACM Computing Surveys. 40 (2): 1–60. doi:10.1145/1348246.1348248. S2CID   7060187.
  3. Camargo, Jorge E.; Caicedo, Juan C.; Gonzalez, Fabio A. (2013). "A kernel-based framework for image collection exploration". Journal of Visual Languages & Computing. 24 (1): 53–57. doi:10.1016/j.jvlc.2012.10.008.