Semantic search

Last updated

Semantic search denotes search with meaning, as distinguished from lexical search where the search engine looks for literal matches of the query words or variants of them, without understanding the overall meaning of the query. [1] Semantic search seeks to improve search accuracy by understanding the searcher's intent and the contextual meaning of terms as they appear in the searchable dataspace, whether on the Web or within a closed system, to generate more relevant results.

Contents

Some authors regard semantic search as a set of techniques for retrieving knowledge from richly structured data sources like ontologies and XML as found on the Semantic Web. [2] Such technologies enable the formal articulation of domain knowledge at a high level of expressiveness and could enable the user to specify their intent in more detail at query time. [3] The articulation enhances content relevance and depth by including specific places, people, or concepts relevant to the query. [4]

See also

Related Research Articles

Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.

<span class="mw-page-title-main">Semantic Web</span> Extension of the Web to facilitate data exchange

The Semantic Web, sometimes known as Web 3.0, is an extension of the World Wide Web through standards set by the World Wide Web Consortium (W3C). The goal of the Semantic Web is to make Internet data machine-readable.

Cross-language information retrieval (CLIR) is a subfield of information retrieval dealing with retrieving information written in a language different from the language of the user's query. The term "cross-language information retrieval" has many synonyms, of which the following are perhaps the most frequent: cross-lingual information retrieval, translingual information retrieval, multilingual information retrieval. The term "multilingual information retrieval" refers more generally both to technology for retrieval of multilingual collections and to technology which has been moved to handle material in one language to another. The term Multilingual Information Retrieval (MLIR) involves the study of systems that accept queries for information in various languages and return objects of various languages, translated into the user's language. Cross-language information retrieval refers more specifically to the use case where users formulate their information need in one language and the system retrieves relevant documents in another. To do so, most CLIR systems use various translation techniques. CLIR techniques can be classified into different categories based on different translation resources:

Question answering (QA) is a computer science discipline within the fields of information retrieval and natural language processing (NLP) that is concerned with building systems that automatically answer questions that are posed by humans in a natural language.

<span class="mw-page-title-main">Content-based image retrieval</span> Method of image retrieval

Content-based image retrieval, also known as query by image content and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases. Content-based image retrieval is opposed to traditional concept-based approaches.

<span class="mw-page-title-main">Text Retrieval Conference</span> Meetings for information retrieval research

The Text REtrieval Conference (TREC) is an ongoing series of workshops focusing on a list of different information retrieval (IR) research areas, or tracks. It is co-sponsored by the National Institute of Standards and Technology (NIST) and the Intelligence Advanced Research Projects Activity, and began in 1992 as part of the TIPSTER Text program. Its purpose is to support and encourage research within the information retrieval community by providing the infrastructure necessary for large-scale evaluation of text retrieval methodologies and to increase the speed of lab-to-product transfer of technology.

Exploratory search is a specialization of information exploration which represents the activities carried out by searchers who are:

Social search is a behavior of retrieving and searching on a social searching engine that mainly searches user-generated content such as news, videos and images related search queries on social media like Facebook, LinkedIn, Twitter, Instagram and Flickr. It is an enhanced version of web search that combines traditional algorithms. The idea behind social search is that instead of ranking search results purely based on semantic relevance between a query and the results, a social search system also takes into account social relationships between the results and the searcher. The social relationships could be in various forms. For example, in LinkedIn people search engine, the social relationships include social connections between searcher and each result, whether or not they are in the same industries, work for the same companies, belong the same social groups, and go the same schools, etc.

Query expansion (QE) is the process of reformulating a given query to improve retrieval performance in information retrieval operations, particularly in the context of query understanding. In the context of search engines, query expansion involves evaluating a user's input and expanding the search query to match additional documents. Query expansion involves techniques such as:

A web query topic classification/categorization is a problem in information science. The task is to assign a web search query to one or more predefined categories, based on its topics. The importance of query classification is underscored by many services provided by Web search. A direct application is to provide better search result pages for users with interests in different categories. For example, users issuing a Web query such as "apple" might expect to see Web pages related to the fruit apple, or they may prefer to see products or news related to the computer company. Online advertisement services can rely on the query classification results to promote different products more accurately. Search result pages can be grouped according to the categories predicted by a query classification algorithm. However, the computation of query classification is non-trivial. Different from the document classification tasks, queries submitted by Web search users are usually short and ambiguous; also the meanings of the queries are evolving over time. Therefore, query topic classification is much more difficult than traditional document classification tasks.

A concept search is an automated information retrieval method that is used to search electronically stored unstructured text for information that is conceptually similar to the information provided in a search query. In other words, the ideas expressed in the information retrieved in response to a concept search query are relevant to the ideas contained in the text of the query.

Collaborative search engines (CSE) are web search engines and enterprise searches within company intranets that let users combine their efforts in information retrieval (IR) activities, share information resources collaboratively using knowledge tags, and allow experts to guide less experienced people through their searches. Collaboration partners do so by providing query terms, collective tagging, adding comments or opinions, rating search results, and links clicked of former (successful) IR activities to users having the same or a related information need.

Folksonomy is a classification system in which end users apply public tags to online items, typically to make those items easier for themselves or others to find later. Over time, this can give rise to a classification system based on those tags and how often they are applied or searched for, in contrast to a taxonomic classification designed by the owners of the content and specified when it is published. This practice is also known as collaborative tagging, social classification, social indexing, and social tagging. Folksonomy was originally "the result of personal free tagging of information [...] for one's own retrieval", but online sharing and interaction expanded it into collaborative forms. Social tagging is the application of tags in an open online environment where the tags of other users are available to others. Collaborative tagging is tagging performed by a group of users. This type of folksonomy is commonly used in cooperative and collaborative projects such as research, content repositories, and social bookmarking.

Collaborative information seeking (CIS) is a field of research that involves studying situations, motivations, and methods for people working in collaborative groups for information seeking projects, as well as building systems for supporting such activities. Such projects often involve information searching or information retrieval (IR), information gathering, and information sharing. Beyond that, CIS can extend to collaborative information synthesis and collaborative sense-making.

GeoSPARQL is a model for representing and querying geospatial linked data for the Semantic Web. It is standardized by the Open Geospatial Consortium as OGC GeoSPARQL. The definition of a small ontology based on well-understood OGC standards is intended to provide a standardized exchange basis for geospatial RDF data which can support both qualitative and quantitative spatial reasoning and querying with the SPARQL database query language.

<span class="mw-page-title-main">Entity linking</span> Concept in Natural Language Processing

In natural language processing, Entity Linking, also referred to as named-entity disambiguation (NED), named-entity recognition and disambiguation (NERD), named-entity normalization (NEN), or Concept Recognition, is the task of assigning a unique identity to entities mentioned in text. For example, given the sentence "Paris is the capital of France", the main idea is to first identify "Paris" and "France" as named entities, and then to determine that "Paris" refers to the city of Paris and not to Paris Hilton or any other entity that could be referred to as "Paris" and "France" to the french country.

Semantic queries allow for queries and analytics of associative and contextual nature. Semantic queries enable the retrieval of both explicitly and implicitly derived information based on syntactic, semantic and structural information contained in data. They are designed to deliver precise results or to answer more fuzzy and wide open questions through pattern matching and digital reasoning.

<span class="mw-page-title-main">UMBEL</span>

UMBEL is a logically organized knowledge graph of 34,000 concepts and entity types that can be used in information science for relating information from disparate sources to one another. It was retired at the end of 2019. UMBEL was first released in July 2008. Version 1.00 was released in February 2011. Its current release is version 1.50.

Query understanding is the process of inferring the intent of a search engine user by extracting semantic meaning from the searcher’s keywords. Query understanding methods generally take place before the search engine retrieves and ranks results. It is related to natural language processing but specifically focused on the understanding of search queries.

<span class="mw-page-title-main">Knowledge graph</span> Type of knowledge base

In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the free-form semantics or relationships underlying these entities.

References

  1. Bast, Hannah; Buchhold, Björn; Haussmann, Elmar (2016). "Semantic search on text and knowledge bases". Foundations and Trends in Information Retrieval. 10 (2–3): 119–271. doi:10.1561/1500000032 . Retrieved 1 December 2018.
  2. Dong, Hai (2008). A survey in semantic search technologies. IEEE. pp. 403–408. Retrieved 1 May 2009.
  3. Ruotsalo, T. (May 2012). "Domain Specific Data Retrieval on the Semantic Web". The Semantic Web: Research and Applications. Eswc2012. Lecture Notes in Computer Science. Vol. 7295. pp. 422–436. doi: 10.1007/978-3-642-30284-8_35 . ISBN   978-3-642-30283-1.
  4. Nowak, Ken (2024). What is semantic seo?. WeAreKinetica. Retrieved 21 June 2024.