Image meta search (or image search engine) is a type of search engine specialised on finding pictures, images, animations etc. Like the text search, image search is an information retrieval system designed to help to find information on the Internet and it allows the user to look for images etc. using keywords or search phrases and to receive a set of thumbnail images, sorted by relevancy.
Specialised search engines, like in the fields of image search, are among the fastest growing search services on the internet. In 2005 alone the number of image searches increased by 91% (Nielsen/NetRatings 2006-03-31).
The most common search engines today offer image search such as Google, Yahoo or Bing!.
A common misunderstanding when it comes to image search is that the technology is based on detecting information in the image itself. But most image search works as other search engines. The metadata of the image is indexed and stored in a large database and when a search query is performed the image search engine looks up the index, and queries are matched with the stored information. The results are presented in order of relevancy. The usefulness of an image search engine depends on the relevance of the results it returns, and the ranking algorithms are one of the keys to becoming a big player. [1]
Some search engines can automatically identify a limited range of visual content, e.g. faces, trees, sky, buildings, flowers, colours etc. This can be used alone, as in content-based image retrieval, or to augment metadata in an image search.
When performing a search the user receives a set of thumbnail images, sorted by relevancy. Each thumbnail is a link back to the original web site where that image is located. Using an advanced search option the user can typically adjust the search criteria to fit their own needs, choosing to search only images or animations, color or black and white, and setting preferences on image size.
Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds.
In computing, a search engine is an information retrieval software system designed to help find information stored on one or more computer systems. Search engines discover, crawl, transform, and store information for retrieval and presentation in response to user queries. The search results are usually presented in a list and are commonly called hits. The most widely used type of search engine is a web search engine, which searches for information on the World Wide Web.
An image retrieval system is a computer system used for browsing, searching and retrieving images from a large database of digital images. Most traditional and common methods of image retrieval utilize some method of adding metadata such as captioning, keywords, title or descriptions to the images so that retrieval can be performed over the annotation words. Manual image annotation is time-consuming, laborious and expensive; to address this, there has been a large amount of research done on automatic image annotation. Additionally, the increase in social web applications and the semantic web have inspired the development of several web-based image annotation tools.
Internet research is the practice of using Internet information, especially free information on the World Wide Web, or Internet-based resources in research.
File Explorer, previously known as Windows Explorer, is a file manager application and default desktop environment that is included with releases of the Microsoft Windows operating system from Windows 95 onwards. It provides a graphical user interface for accessing the file systems, as well as user interface elements such as the taskbar and desktop.
Content-based image retrieval, also known as query by image content and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases. Content-based image retrieval is opposed to traditional concept-based approaches.
In text retrieval, full-text search refers to techniques for searching a single computer-stored document or a collection in a full-text database. Full-text search is distinguished from searches based on metadata or on parts of the original texts represented in databases.
Federated search retrieves information from a variety of sources via a search application built on top of one or more search engines. A user makes a single query request which is distributed to the search engines, databases or other query engines participating in the federation. The federated search then aggregates the results that are received from the search engines for presentation to the user. Federated search can be used to integrate disparate information resources within a single large organization ("enterprise") or for the entire web.
A video search engine is a web-based search engine which crawls the web for video content. Some video search engines parse externally hosted content while others allow content to be uploaded and hosted on their own servers. Some engines also allow users to search by video format type and by length of the clip. The video search results are usually accompanied by a thumbnail view of the video.
A search engine is a software system that provides hyperlinks to web pages and other relevant information on the Web in response to a user's query. The user inputs a query within a web browser or a mobile app, and the search results are often a list of hyperlinks, accompanied by textual summaries and images. Users also have the option of limiting the search to a specific type of results, such as images, videos, or news.
A search engine results page (SERP) is a webpage that is displayed by a search engine in response to a query by a user. The main component of a SERP is the listing of results that are returned by the search engine in response to a keyword query.
Google Images is a search engine owned by Google that allows users to search the World Wide Web for images. It was introduced on July 12, 2001, due to a demand for pictures of the green Versace dress of Jennifer Lopez worn in February 2000. In 2011, reverse image search functionality was added.
Multimedia search enables information search using queries in multiple data types including text and other multimedia formats. Multimedia search can be implemented through multimodal search interfaces, i.e., interfaces that allow to submit search queries not only as textual requests, but also through other media. We can distinguish two methodologies in multimedia search:
Search engine indexing is the collecting, parsing, and storing of data to facilitate fast and accurate information retrieval. Index design incorporates interdisciplinary concepts from linguistics, cognitive psychology, mathematics, informatics, and computer science. An alternate name for the process, in the context of search engines designed to find web pages on the Internet, is web indexing.
A search appliance (SA) is a type of computer appliance which is attached to a corporate network for the purpose of indexing the content shared across that network in a way that is similar to a web search engine.
A document-oriented database, or document store, is a computer program and data storage system designed for storing, retrieving and managing document-oriented information, also known as semi-structured data.
A concept search is an automated information retrieval method that is used to search electronically stored unstructured text for information that is conceptually similar to the information provided in a search query. In other words, the ideas expressed in the information retrieved in response to a concept search query are relevant to the ideas contained in the text of the query.
Reverse image search is a content-based image retrieval (CBIR) query technique that involves providing the CBIR system with a sample image that it will then base its search upon; in terms of information retrieval, the sample image is very useful. In particular, reverse image search is characterized by a lack of search terms. This effectively removes the need for a user to guess at keywords or terms that may or may not return a correct result. Reverse image search also allows users to discover content that is related to a specific sample image or the popularity of an image, and to discover manipulated versions and derivative works.
The following outline is provided as an overview of and topical guide to search engines.
A 3D Content Retrieval system is a computer system for browsing, searching and retrieving three dimensional digital contents from a large database of digital images. The most original way of doing 3D content retrieval uses methods to add description text to 3D content files such as the content file name, link text, and the web page title so that related 3D content can be found through text retrieval. Because of the inefficiency of manually annotating 3D files, researchers have investigated ways to automate the annotation process and provide a unified standard to create text descriptions for 3D contents. Moreover, the increase in 3D content has demanded and inspired more advanced ways to retrieve 3D information. Thus, shape matching methods for 3D content retrieval have become popular. Shape matching retrieval is based on techniques that compare and contrast similarities between 3D models.