Douglas X-3 Stiletto

Last updated
X-3 Stiletto
Douglas X-3 NASA E-1546.jpg
Role Experimental aircraft
Manufacturer Douglas
DesignerSchuyler Kleinhans, Baily Oswald and Francis Clauser [1]
First flight15 October 1952
Retired23 May 1956
StatusPreserved at National Museum of the United States Air Force
Primary users United States Air Force
NACA
Number built1

The Douglas X-3 Stiletto is a 1950s United States experimental jet aircraft with a slender fuselage and a long tapered nose, manufactured by the Douglas Aircraft Company. Its primary mission was to investigate the design features of an aircraft suitable for sustained supersonic speeds, which included the first use of titanium in major airframe components. Douglas designed the X-3 with the goal of a maximum speed of approximately 2,000 mph (3,200 km/h), [2] but it was seriously underpowered for this purpose and could not even exceed Mach 1 in level flight. [3] Although the research aircraft was a disappointment, Lockheed designers used data from the X-3 tests for the Lockheed F-104 Starfighter which used a similar trapezoidal wing design in a successful Mach 2 fighter.

Contents

Design and development

The Douglas X-3 Stiletto was the sleekest of the early experimental aircraft, but its research accomplishments were not those originally planned. It was originally intended for advanced Mach 2 turbojet propulsion testing, but it fell largely into the category of configuration explorers, as it never met its original performance goals due to inadequate engines. [4] The goal of the aircraft was ambitiousit was to take off from the ground under its own power, climb to high altitude, maintain a sustained cruise speed of Mach 2, then land under its own power. The aircraft was also to test the feasibility of low-aspect-ratio wings, and the large-scale use of titanium in aircraft structures. The design of the Douglas X-3 Stiletto is the subject of U.S. Design Patent #172,588 granted on July 13, 1954 to Frank N. Fleming and Harold T. Luskin and assigned to the Douglas Aircraft Company, Inc.

Construction of a pair of X-3s was approved on 30 June 1949. During development, the X-3's planned Westinghouse J46 engines were unable to meet the thrust, size and weight requirements, so lower-thrust Westinghouse J34 turbojets were substituted, producing only 4,900 pounds-force (22 kilonewtons) of thrust with afterburner rather than the planned 7,000 lbf (31 kN). The first aircraft was built and delivered to Edwards Air Force Base, California, on 11 September 1952.

The X-3 featured an unusual slender, streamlined shape having a very long, gently-tapered nose and small trapezoidal wings. The aim was to create the thinnest and most slender shape possible in order to achieve low drag at supersonic speeds. The extended nose was to allow for the provision of test equipment while the semi-buried cockpit and windscreen were designed to alleviate the effects of "thermal thicket" conditions. The low aspect ratio, unswept wings were designed for high speed and later the Lockheed design team used data from the X-3 tests for the similar F-104 Starfighter wing design. Due to both engine and airframe problems, the partially completed second aircraft was cancelled, and its components were used for spare parts. [5]

Operational history

X-3 in flight Douglas X-3 NASA E-17348.jpg
X-3 in flight

The first X-3 "hop" was made on 15 October 1952, by Douglas test pilot Bill Bridgeman. During a high-speed taxi test, Bridgeman lifted the X-3 off the ground and flew it about one mile (1.6 km) before settling back onto the lakebed. The official first flight was made by Bridgeman on 20 October and lasted about 20 minutes. He made a total of 26 flights (counting the hop) by the end of the Douglas tests in December 1953. These showed that the X-3 was severely underpowered and difficult to control; its takeoff speed was unusually high—260 miles per hour (230 kn; 420 km/h). More seriously, the X-3 did not approach its planned top speed. Its first supersonic flight required that the airplane make a 15° dive to reach Mach 1.1. The X-3's fastest flight, made on 28 July 1953, reached Mach 1.208 in a 30° dive. [3] A plan to re-engine the X-3 with rocket motors was considered but eventually dropped. [5]

With the completion of the contractor test program in December 1953, the X-3 was delivered to the United States Air Force. The poor performance of the X-3 meant only an abbreviated program would be made, to gain experience with low aspect ratio wings. Lieutenant Colonel Frank Everest and Major Chuck Yeager each made three flights. Although flown by Air Force pilots, these were counted as NACA flights. With the last flight by Yeager in July 1954, NACA made plans for a limited series of research flights with the X-3. The initial flights looked at longitudinal stability and control, wing and tail loads, and pressure distribution.

NACA pilot Joseph A. Walker made his pilot checkout flight in the X-3 on 23 August 1954, then conducted eight research flights in September and October. By late October, the research program was expanded to include lateral and directional stability tests. In these tests, the X-3 was abruptly rolled at transonic and supersonic speeds, with the rudder kept centered. Despite its shortcomings, the X-3 was ideal for these tests. The mass of its engines, fuel and structure was concentrated in its long, narrow fuselage, while its wings were short and stubby. As a result, the X-3 was "loaded" along its fuselage, rather than its wings. This was typical of the fighter aircraft then in development or testing.

These tests would lead to the X-3's most significant flight, and the near-loss of the aircraft. On 27 October 1954, Walker made an abrupt left roll at Mach 0.92 and an altitude of 30,000 feet (9,100 metres). The X-3 rolled as expected, but also pitched up 20° and yawed 16°. The aircraft gyrated for five seconds before Walker was able to get it back under control. He then set up for the next test point. Walker put the X-3 into a dive, accelerating to Mach 1.154 at 32,356 ft (9,862 m), where he made an abrupt left roll. The aircraft pitched down and recorded an acceleration of -6.7 g (-66 m/s²), then pitched upwards to +7 g (69 m/s²). At the same time, the X-3 side-slipped, resulting in a loading of 2 g (20 m/s²). Walker managed to bring the X-3 under control and successfully landed.

The X-3 Stiletto on display in the R&D hangar of the U.S. Air Force Museum, 2005 X-3 NMUSAF.jpg
The X-3 Stiletto on display in the R&D hangar of the U.S. Air Force Museum, 2005

The post-flight examination showed that the fuselage had been subjected to its maximum load limit. Had the acceleration been higher, the aircraft could have broken up. Walker and the X-3 had experienced "roll inertia coupling," in which a maneuver in one axis will cause an uncommanded maneuver in one or two others. At the same time, several North American F-100 Super Sabres were involved in similar incidents. A research program was started by NACA to understand the problem and find solutions.

For the X-3, the roll coupling flight was the high point of its history. The aircraft was grounded for nearly a year after the flight, and never again explored its roll stability and control boundaries. Walker made another ten flights between 20 September 1955 and the last on 23 May 1956. The aircraft was subsequently retired to the National Museum of the United States Air Force. [6]

Although the X-3 never met its intention of providing aerodynamic data in Mach 2 cruise, its short service was of value. It showed the dangers of roll inertia coupling, and provided early flight test data on the phenomenon. Its small, highly loaded unswept wing was used in the Lockheed F-104 Starfighter, [7] and it was one of the first aircraft to use titanium. Finally, the X-3's very high takeoff and landing speeds required improvements in tire technology.

Production

Two aircraft were ordered, but only one was built, completing 51 test flights.

Aircraft on display

Specifications (X-3)

Douglas X-3 Stiletto 3 view diagram WIKI-EN NASA.png

Data from McDonnell Douglas aircraft since 1920 Volume 1 [9]

General characteristics

Performance

See also

Aircraft of comparable role, configuration, and era

Related lists

Related Research Articles

<span class="mw-page-title-main">Bell X-1</span> Experimental rocket-powered aircraft, the first airplane to break the sound barrier in level flight

The Bell X-1 is a rocket engine–powered aircraft, designated originally as the XS-1, and was a joint National Advisory Committee for Aeronautics–U.S. Army Air Forces–U.S. Air Force supersonic research project built by Bell Aircraft. Conceived during 1944 and designed and built in 1945, it achieved a speed of nearly 1,000 miles per hour in 1948. A derivative of this same design, the Bell X-1A, having greater fuel capacity and hence longer rocket burning time, exceeded 1,600 miles per hour in 1954. The X-1 aircraft #46-062, nicknamed Glamorous Glennis and flown by Chuck Yeager, was the first piloted airplane to exceed the speed of sound in level flight and was the first of the X-planes, a series of American experimental rocket planes designed for testing new technologies.

<span class="mw-page-title-main">North American X-15</span> Rocket-powered aircraft and spaceplane operated by the US Air Force and NASA

The North American X-15 is a hypersonic rocket-powered aircraft operated by the United States Air Force and the National Aeronautics and Space Administration (NASA) as part of the X-plane series of experimental aircraft. The X-15 set speed and altitude records in the 1960s, crossing the edge of outer space and returning with valuable data used in aircraft and spacecraft design. The X-15's highest speed, 4,520 miles per hour, was achieved on 3 October 1967, when William J. Knight flew at Mach 6.7 at an altitude of 102,100 feet (31,120 m), or 19.34 miles. This set the official world record for the highest speed ever recorded by a crewed, powered aircraft, which remains unbroken.

<span class="mw-page-title-main">McDonnell XF-88 Voodoo</span> Prototype fighter aircraft

The McDonnell XF-88 Voodoo was a long-range, twinjet fighter aircraft with swept wings designed for the United States Air Force. Although it never entered production, its design was adapted for the subsequent supersonic F-101 Voodoo.

<span class="mw-page-title-main">Lockheed L-2000</span> Proposed US supersonic airliner design

The Lockheed L-2000 was Lockheed Corporation's entry in a government-funded competition to build the United States' first supersonic airliner in the 1960s. The L-2000 lost the contract to the Boeing 2707, but that competing design was ultimately canceled for political, environmental and economic reasons.

<span class="mw-page-title-main">Bell X-2</span> Experimental aircraft build to investigate flight characteristics in the Mach 2–3 range

The Bell X-2 was an X-plane research aircraft built to investigate flight characteristics in the Mach 2–3 range. The X-2 was a rocket-powered, swept-wing research aircraft developed jointly in 1945 by Bell Aircraft Corporation, the United States Air Force and the National Advisory Committee for Aeronautics (NACA) to explore aerodynamic problems of supersonic flight and to expand the speed and altitude regimes obtained with the earlier X-1 series of research aircraft.

<span class="mw-page-title-main">Douglas D-558-2 Skyrocket</span> Experimental supersonic aircraft

The Douglas D-558-2 Skyrocket is a rocket and jet-powered research supersonic aircraft built by the Douglas Aircraft Company for the United States Navy. On 20 November 1953, shortly before the 50th anniversary of powered flight, Scott Crossfield piloted the Skyrocket to Mach 2, or more than 1,290 mph (2076 km/h), the first time an aircraft had exceeded twice the speed of sound.

<span class="mw-page-title-main">Northrop YF-23</span> Prototype fighter aircraft for the US Air Force Advanced Tactical Fighter program

The Northrop/McDonnell Douglas YF-23 is an American single-seat, twin-engine, supersonic stealth fighter aircraft technology demonstrator designed for the United States Air Force (USAF). The design was a finalist in the USAF's Advanced Tactical Fighter (ATF) competition, battling the Lockheed YF-22 for a production contract. Two YF-23 prototypes were built.

<span class="mw-page-title-main">Northrop X-4 Bantam</span> American experimental jet aircraft

The Northrop X-4 Bantam was a prototype small twinjet aircraft manufactured by Northrop Corporation in 1948. It had no horizontal tail surfaces, depending instead on combined elevator and aileron control surfaces for control in pitch and roll attitudes, almost exactly in the manner of the similar-format, rocket-powered Messerschmitt Me 163 of Nazi Germany's Luftwaffe. Some aerodynamicists had proposed that eliminating the horizontal tail would also do away with stability problems at fast speeds resulting from the interaction of supersonic shock waves from the wings and the horizontal stabilizers. The idea had merit, but the flight control systems of that time prevented the X-4 from achieving any success.

<span class="mw-page-title-main">Joseph A. Walker</span> American test pilot

Joseph Albert Walker was an American World War II pilot, experimental physicist, NASA test pilot, and astronaut who was the first person to fly an airplane to space. He was one of twelve pilots who flew the North American X-15, an experimental spaceplane jointly operated by the Air Force and NASA.

<span class="mw-page-title-main">Lockheed YF-22</span> Prototype fighter aircraft for the US Air Force Advanced Tactical Fighter program

The Lockheed/Boeing/General Dynamics YF-22 is an American single-seat, twin-engine fighter aircraft technology demonstrator designed for the United States Air Force (USAF). The design was a finalist in the USAF's Advanced Tactical Fighter competition, and two prototypes were built for the demonstration/validation phase of the competition. The YF-22 won the contest against the Northrop YF-23, and the design was developed into the Lockheed Martin F-22 Raptor. The YF-22 has a similar aerodynamic layout and configuration as the F-22, but with differences in the position and design of the cockpit, tail fins and wings, and in internal structural layout.

<span class="mw-page-title-main">Republic XF-103</span> Cancelled American military plane project of the 1940s-1950s

The Republic XF-103 was an American project to develop a powerful missile-armed interceptor aircraft capable of destroying Soviet bombers while flying at speeds as high as Mach 3. Despite a prolonged development, it never progressed past the mockup stage.

<span class="mw-page-title-main">North American F-107</span> 1956 prototype fighter aircraft

The North American F-107 is North American Aviation's entry in a United States Air Force tactical fighter-bomber design competition of the 1950s, based on the F-100 Super Sabre. It incorporated many innovations and radical design features, notably the over-fuselage air intakes. The competition was eventually won by the Republic F-105 Thunderchief, and two of the three F-107 prototypes ended their lives as test aircraft. One is on display at the National Museum of the United States Air Force and a second at Pima Air and Space Museum.

<span class="mw-page-title-main">Douglas D-558-1 Skystreak</span> Type of aircraft

The Douglas Skystreak was an American single-engine jet research aircraft of the 1940s. It was designed in 1945 by the Douglas Aircraft Company for the U.S. Navy Bureau of Aeronautics, in conjunction with the National Advisory Committee for Aeronautics (NACA). The Skystreak was a turbojet-powered aircraft that took off from the ground under its own power and had unswept flying surfaces.

<span class="mw-page-title-main">Lockheed CL-1200 Lancer</span> American fighter proposal

The Lockheed CL-1200 Lancer was a late 1960s company-funded proposal for a fighter aircraft based on the Lockheed F-104 Starfighter. The CL-1200 was conceived and marketed mainly for and to non-US military services, as an export product. As such it would have competed with combat-proven designs like the Dassault Mirage III, McDonnell Douglas F-4 Phantom II, Mikoyan-Gurevich MiG-21, and Northrop F-5E Tiger II. The CL-1200 competed unsuccessfully against proposed fourth generation designs, under the US government's Lightweight Fighter program, which would eventually result in the General Dynamics F-16 and Northrop F-17 Cobra.

<span class="mw-page-title-main">Supersonic aircraft</span> Aircraft that travels faster than the speed of sound

A supersonic aircraft is an aircraft capable of supersonic flight, that is, flying faster than the speed of sound. Supersonic aircraft were developed in the second half of the twentieth century. Supersonic aircraft have been used for research and military purposes, but only two supersonic aircraft, the Tupolev Tu-144 and the Concorde, ever entered service for civil use as airliners. Fighter jets are the most common example of supersonic aircraft.

<span class="mw-page-title-main">Nord 1500 Griffon</span> 1950s French prototype interceptor aircraft

The Nord 1500 Griffon was an experimental ramjet-powered interceptor aircraft designed and built by French state-owned aircraft manufacturer Nord Aviation. The Griffon was developed to become a Mach 2 follow on to the supersonic Nord Gerfaut research aircraft. Development of the aircraft began in earnest after the receipt of a letter of intent in 1953 for a pair of unarmed research aircraft. The design featured an innovative dual propulsion turbojet-ramjet configuration; the former being used to takeoff and attain sufficient speed to start the latter.

<span class="mw-page-title-main">Rockwell XFV-12</span> American VTOL fighter prototype

The Rockwell XFV-12 was a prototype supersonic United States Navy fighter which was built in 1977. The XFV-12 design attempted to combine the Mach 2 speed and AIM-7 Sparrow armament of the McDonnell Douglas F-4 Phantom II in a VTOL fighter for the small Sea Control Ship which was under study at the time. On paper, it looked superior to the subsonic Hawker Siddeley Harrier attack fighter. However, it was unable to demonstrate an untethered vertical takeoff and its inability to meet performance requirements resulted in the program's termination.

<span class="mw-page-title-main">Lockheed XF-104 Starfighter</span> Experimental fighter aircraft

The Lockheed XF-104 Starfighter was a single-engine, high-performance, supersonic interceptor prototype for a United States Air Force (USAF) series of lightweight and simple fighters. Only two aircraft were built; one aircraft was used primarily for aerodynamic research and the other served as an armament testbed, both aircraft being destroyed in accidents during testing. The XF-104s were forerunners of over 2,500 production Lockheed F-104 Starfighters.

<span class="mw-page-title-main">Lockheed NF-104A</span> Astronaut training aircraft conversion

The Lockheed NF-104A was an American mixed-power, high-performance, supersonic aerospace trainer that served as a low-cost astronaut training vehicle for the North American X-15 and projected Boeing X-20 Dyna-Soar programs.

The Boom XB-1 "Baby Boom" is a one-third-scale trijet supersonic demonstrator designed by Boom Technology as part of development of the Boom Overture supersonic transport airliner. Powered by three General Electric J85s, it is planned to maintain Mach 2.2, with over 1,000 nautical miles of range. The XB-1 began taxi tests in December 2022, and conducted its maiden flight on March 22, 2024.

References

  1. Hartman, Edwin Phelps (1 January 1970). Adventures in Research a History of Ames Research Center 1940-1965. University of California Libraries.
  2. "Popular Mechanics". Hearst Magazines. January 1954: 102. Retrieved 4 April 2018.{{cite journal}}: Cite journal requires |journal= (help)
  3. 1 2 3 Winchester, Jim (General editor) (2007). Concept aircraft : prototypes, x-planes and experimental aircraft (Reprinted. ed.). Hoo: Grange Books. p. 88. ISBN   978-1-84013-809-2.{{cite book}}: |first1= has generic name (help)
  4. Hallion, Richard P. "The NACA, NASA, and the Supersonic-Hypersonic Frontier" (PDF). NASA Technical Reports. Retrieved 7 September 2011.
  5. 1 2 Winchester 2005, p. 89.
  6. "Douglas X-3 Stiletto". National Museum of the US Air Force™. Retrieved 4 April 2018.
  7. Pace, Steve (1991). X-Fighters : USAF experimental and prototype fighters, XP-59 to YF-23. Osceola, WI: Motorbooks International. p. 130. ISBN   0-87938-540-5.
  8. United States Air Force Museum Guidebook 1975, p. 88.
  9. Francillon, René J. (1988). McDonnell Douglas aircraft since 1920 Volume 1 (New ed.). London: Putnam. pp. 450–454. ISBN   978-0851778273.