UDFj-39546284

Last updated
UDFj-39546284
UDFj-39546284-hs-2011-05-c.jpg
Hubble Space Telescope image of UDFj-39546284 (seen as a reddish spot in the center of the image)
Observation data (J2000 epoch)
Constellation Fornax
Right ascension 03h 32m 39.54s [1]
Declination −27° 46 28.5 [1]
Redshift 11.58+0.05
−0.05
[2] [3] [4]
Apparent magnitude  (V)V fainter than 30.1 [5]
H160 = 28.92 ± 0.18 [5]
J 125H 160 > 2 [5]
Other designations
[MDB2013] UDF12-3954-6285, JADES-GS-z11-0

UDFj-39546284 is a high-redshift Lyman-break galaxy discovered by the Hubble Space Telescope in infrared Hubble Ultra-Deep Field (HUDF) observations in 2009. The object, located in the Fornax constellation, was identified by G. Illingworth (UC Santa Cruz), R. Bouwens (UC Santa Cruz and Leiden University) and the HUDF09 Team during 2009 and 2010. [6] [7] It was reported with a redshift of z~10 using Hubble and Spitzer Space Telescope photometric data, [3] with later reports in 2012 suggesting a possibly higher redshift of z = 11.9 [8] [3] Although doubts were raised that this galaxy could instead be a low-redshift interloper with extreme spectral emission lines producing the appearance of a very high redshift source, [4] [3] later spectroscopic observations by the James Webb Space Telescope's NIRSpec instrument in 2022 confirmed the galaxy's high redshift to a spectroscopically confirmed estimate of z = 11.58. [2]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Fornax</span> Constellation in the southern celestial hemisphere

Fornax is a constellation in the southern celestial hemisphere, partly ringed by the celestial river Eridanus. Its name is Latin for furnace. It was named by French astronomer Nicolas Louis de Lacaille in 1756. Fornax is one of the 88 modern constellations.

<span class="mw-page-title-main">Hubble Ultra-Deep Field</span> Deep-field space image

The Hubble Ultra-Deep Field (HUDF) is a deep-field image of a small region of space in the constellation Fornax, containing an estimated 10,000 galaxies. The original data for the image was collected by the Hubble Space Telescope from September 2003 to January 2004. It includes light from galaxies that existed about 13 billion years ago, some 400 to 800 million years after the Big Bang.

Rychard J. Bouwens is an associate professor at Leiden University. He is also a former member of the Advanced Camera for Surveys Guaranteed Time Observation team and postdoctoral research astronomer at the University of California, Santa Cruz. He obtained his bachelor's degree in physics, chemistry, and mathematics from Hope College. He then went on to earn his Ph.D. in physics at the University of California, Berkeley under the supervision of Joseph Silk and also worked with Tom Broadhurst.

<span class="mw-page-title-main">CL1358+62</span> Galaxy cluster in the constellation Draco

CL 1358+62 is a galaxy cluster located at z=0.33 redshift. Behind the cluster, lensed into a red arc is an infant galaxy that was the farthest object in the observable universe for a few months. It had a record redshift of z=4.92 and was discovered on July 31, 1997 by M. Franx and G. Illingsworth. It is located approximately 26 billion light years from Earth. Its redshift was measured by the Keck Telescope shortly after its discovery. Along with G1, another galaxy also lensed, was found to be at z=4.92. The pair of galaxies were the first things other than quasars to have the title of most distant object found, since the 1960s. The pair of galaxies remained the most distant objects known until the discovery of RD1 at z=5.34, the first object to exceed redshift 5.

<span class="mw-page-title-main">Extended Groth Strip</span>

The Extended Groth Strip is an image of a small region between the constellations of Ursa Major and Boötes, based on the results of a series of observations by the Hubble Space Telescope. It covers an area 70 arcminutes across and 10 arcminutes wide, which correlates to a patch of sky roughly the width of a finger stretched at arm's length. The image was assembled from over 500 separate exposures taken with the Space Telescope's Advanced Camera for Surveys at 63 different pointings, spread out over the course of one year from June 2004 to March 2005. The complete image at the highest resolution in JPEG format is nearly 250 megabytes.

Lyman-break galaxies are star-forming galaxies at high redshift that are selected using the differing appearance of the galaxy in several imaging filters due to the position of the Lyman limit. The technique has primarily been used to select galaxies at redshifts of z = 3–4 using ultraviolet and optical filters, but progress in ultraviolet astronomy and in infrared astronomy has allowed the use of this technique at lower and higher redshifts using ultraviolet and near-infrared filters.

<span class="mw-page-title-main">UDFy-38135539</span> Distant galaxy in the constellation Fornax

UDFy-38135539 is the Hubble Ultra Deep Field (UDF) identifier for a galaxy which was calculated as of October 2010 to have a light travel time of 13.1 billion years with a present proper distance of around 30 billion light-years.

<span class="mw-page-title-main">MACS0647-JD</span> The farthest known galaxy from the Earth in the constellation Camelopardalis

MACS0647-JD is a galaxy with a redshift of about z = 10.7, equivalent to a light travel distance of 13.26 billion light-years. If the distance estimate is correct, it formed about 427 million years after the Big Bang.

<span class="mw-page-title-main">Cluster Lensing and Supernova survey with Hubble</span>

The Cluster Lensing And Supernova survey with Hubble (CLASH) was a program on the Hubble Space Telescope to observe 25 massive galaxy clusters. CLASH was one of three programs selected in the first class of Hubble multi-cycle treasury programs, which were designed to tackle large questions unanswerable through normal observations. Observations for CLASH were conducted between November 2010 and July 2013. CLASH was led by principal investigator Marc Postman, and had a science team of over 40 researchers.

<span class="mw-page-title-main">IRC 0218</span> Galaxy cluster in the constellation Cetus

The galaxy cluster IRC 0218 hosts the most distant strong gravitational lensing galaxy currently known at a redshift of z = 1.62. The lens is one of the two brightest cluster galaxies and is lensing a background star-forming galaxy at a redshift of z = 2.26 into a bright arc and a faint counterimage. The lens was discovered through a combination of Hubble Space Telescope and Keck telescope imaging and spectroscopy. The discovery and subsequent analysis of the lens was published in the Astrophysical Journal Letters on June 23, 2014 by an international team of astronomers led by Dr. Kim-Vy Tran from Texas A&M University in College Station, Texas and team members Dr. Kenneth Wong and Dr. Sherry Suyu from the Academia Sinica Institute of Astronomy and Astrophysics in Taipei, Taiwan.

<span class="mw-page-title-main">Simon Lilly</span>

Simon John Lilly FRS is a professor in the Department of Physics at ETH Zürich.

<span class="mw-page-title-main">SN Refsdal</span> Supernova that has been lensed

SN Refsdal is the first detected multiply-lensed supernova, visible within the field of the galaxy cluster MACS J1149+2223. It was named after Norwegian astrophysicist Sjur Refsdal, who, in 1964, first proposed using time-delayed images from a lensed supernova to study the expansion of the universe. The observations were made using the Hubble Space Telescope.

<span class="mw-page-title-main">EGS-zs8-1</span>

EGS-zs8-1 is a high-redshift Lyman-break galaxy found at the northern constellation of Boötes. In May 2015, EGS-zs8-1 had the highest spectroscopic redshift of any known galaxy, meaning EGS-zs8-1 was the most distant and the oldest galaxy observed. In July 2015, EGS-zs8-1 was surpassed by EGSY8p7 (EGSY-2008532660).

<span class="mw-page-title-main">EGSY8p7</span>

EGSY8p7 (EGSY-2008532660) is a distant galaxy in the constellation of Boötes, with a spectroscopic redshift of z = 8.68, a light travel distance of 13.2 billion light-years from Earth. Therefore, at an age of 13.2 billion years, it is observed as it existed 570 million years after the Big Bang, which occurred 13.8 billion years ago, using the W. M. Keck Observatory. In July 2015, EGSY8p7 was announced as the oldest and most-distant known object, surpassing the previous record holder, EGS-zs8-1, which was determined in May 2015 as the oldest and most distant object. In March 2016, Pascal Oesch, one of the discoverers of EGSY8p7, announced the discovery of GN-z11, an older and more distant galaxy.

<span class="mw-page-title-main">GN-z11</span> High-redshift galaxy in the constellation Ursa Major

GN-z11 is a high-redshift galaxy found in the constellation Ursa Major. It is among the farthest known galaxies from Earth ever discovered. The 2015 discovery was published in a 2016 paper headed by Pascal Oesch and Gabriel Brammer. Up until the discovery of JADES-GS-z13-0 in 2022 by the James Webb Space Telescope, GN-z11 was the oldest and most distant known galaxy yet identified in the observable universe, having a spectroscopic redshift of z = 10.957, which corresponds to a proper distance of approximately 32 billion light-years.

<span class="mw-page-title-main">IC 1459</span> Elliptical galaxy in the constellation of Grus

IC 1459 is an elliptical galaxy located in the constellation Grus. It is located at a distance of circa 85 million light-years from Earth, which, given its apparent dimensions, means that IC 1459 is about 130,000 light-years across. It was discovered by Edward Emerson Barnard in 1892.

Sangeeta Malhotra is an astrophysicist who studies galaxies, their contents, and their effects on the universe around them. The objects she studies range from our own Milky Way galaxy to some of the earliest and most distant known galaxies in the epoch of cosmic dawn.

<span class="mw-page-title-main">SPT0615-JD</span> Galaxy

SPT0615-JD is a dwarf galaxy situated within the constellation Pictor, and is the farthest galaxy ever imaged by means of gravitational lensing, as of 2018. Brett Salmon of the Space Telescope Science Institute in Baltimore was the lead scientist of the study of the galaxy.

References

  1. 1 2 "[MDB2013] UDF12-3954-6284". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2021-02-13.
  2. 1 2 Robertson, B. E.; et al. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10". Nature Astronomy. 7 (5): 611–621. arXiv: 2212.04480 . doi:10.1038/s41550-023-01921-1. S2CID   257968812.
  3. 1 2 3 4 Bouwens, R. J.; Oesch, P. A.; Illingworth, G. D.; Labbé, I.; Van Dokkum, P. G.; Brammer, G.; Magee, D.; Spitler, L. R.; Franx, M.; Smit, R.; Trenti, M.; Gonzalez, V.; Carollo, C. M. (2013). "Photometric Constraints on the Redshift of z ~ 10 Candidate UDFj-39546284 from Deeper WFC3/IR+ACS+IRAC Observations over the HUDF". The Astrophysical Journal Letters. 765 (1): L16. arXiv: 1211.3105 . Bibcode:2013ApJ...765L..16B. doi:10.1088/2041-8205/765/1/L16.
  4. 1 2 Brammer, Gabriel B.; Van Dokkum, Pieter G.; Illingworth, Garth D.; Bouwens, Rychard J.; Labbé, Ivo; Franx, Marijn; Momcheva, Ivelina; Oesch, Pascal A. (2013). "A Tentative Detection of an Emission Line at 1.6 μm for the z ~ 12 Candidate UDFj-39546284". The Astrophysical Journal Letters. 765 (1): L2. arXiv: 1301.0317 . Bibcode:2013ApJ...765L...2B. doi:10.1088/2041-8205/765/1/L2. S2CID   119226564.
  5. 1 2 3 R.J. Bouwens; G.D. Illingworth; I. Labbe; P.A. Oesch; M. Carollo; M. Trenti; P.G. van Dokkum; M. Franx; M. Stiavelli; V. Gonzalez; D. Magee; Bradley (2011). "A candidate redshift z ~ 10 galaxy and rapid changes in that population at an age of 500 Myr". Nature . 469 (7331): 504–507. arXiv: 0912.4263 . Bibcode:2011Natur.469..504B. doi:10.1038/nature09717. PMID   21270889. S2CID   4425674.
  6. Staff (January 28, 2011). "Most Distant Galaxy Candidate Ever Seen in Universe". NASA . Retrieved December 13, 2012.
  7. Staff. "Picture Album: Gray-scale Image of Object UDFj-39546284 from HUDF WFC3/IR". Space Telescope Science Institute . Retrieved December 13, 2012.
  8. Wall, Mike (December 12, 2012). "Ancient Galaxy May Be Most Distant Ever Seen". Space.com . Retrieved December 12, 2012.
Preceded by Most distant astronomical object known
2011  2012
Succeeded by
Preceded by Most distant astronomical object known
2012
Succeeded by
Preceded by Most distant galaxy known
2011  2012
Succeeded by
Preceded by Most distant galaxy known
2012
Succeeded by