MOA-2009-BLG-387Lb

Last updated

MOA-2009-BLG-387Lb
Discovery
Discovered by Virginie Batista et al. [1]
Discovery site SAAO/Perth/Canopus
AO/FCO/Wise/HO/SSO/LSO/ORM [1]
Discovery datePublished February 21, 2011 [1]
Gravitational microlensing
Orbital characteristics
1.8 +0.9
0.7
[2] AU
1970 +2.2
1.6
[2] d
5.4 [1] y
Star MOA-2009-BLG-387L
Physical characteristics
Mass 2.6 +4.1
1.6
[2] MJ

    MOA-2009-BLG-387Lb is an exoplanet in the orbit of the red dwarf MOA-2009-BLG-387L. Its discovery was announced on February 21, 2011, making it the eleventh planet discovered using gravitational microlensing. The planet is thought to be over twice the mass of Jupiter and to have an orbit 80 percent larger than that of Earth's, lasting approximately 1,970 days. However, its exact characteristics are difficult to constrain because the characteristics of the host star are not well known.

    Contents

    Characteristics

    Mass and orbit

    MOA-2009-BLG-387Lb is a gas giant, with an estimated mass 2.6 times that of Jupiter's and a radius of 1.75 times that of Jupiter and an estimated mean distance of 1.8 AU from its host star. It has an orbital period of approximately 1970 days. [2] Although the mass and mean distance of MOA-2009-BLG-387Lb is estimated, the confidence intervals are very large, indicating that there is a large uncertainty present. These uncertainties are largely due to how the exact parameters of the host star are not known. [1]

    Host star

    The planet is the only one known to be in the orbit of the star MOA-2009-BLG-387L, which is an M-type dwarf star that has a mass that is approximately 0.19 times that of the Sun. The star is located at an estimated 5700 parsecs (18,591 light years) from the Earth. [2] The star is named for the Microlensing Observations in Astrophysics group, which saw the star as a gravitational microlensing event in 2009 and combed the data in hope of discovering a planet. [1]

    Discovery

    MOA-2009-BLG-387 was a gravitational microlensing event detected by the Microlensing Observations in Astrophysics collaboration on July 24, 2009, which searches and documents chance and brief alignments of stars with other stars or objects; such alignments cause a gravitational lens effect, which bends light and causes distorted, but magnified, images that can be interpreted. The detection of two caustics were logged over the next few days by the South African Astronomical Observatory, the Perth Observatory, and the Canopus Hill Observatory in Tasmania, with a separation of about seven days between caustic events. [1]

    On June 7, 2010, long after the microlensing event had subsided, the science teams studying the star used the NACO adaptive optics facility at the Very Large Telescope in Chile to determine the actual apparent magnitude of the star that microlensed its background star, hoping to compare it to the magnitude of the star measured during the microlensing event. A discrepancy was found, a discrepancy that may have been a result of either error or of a planetary body. Interpretation of follow-up observations led to the planet's confirmation. The ratio between the planet's mass and its host star's mass is well-constrained, but a large interval of uncertainty exists because the host star's mass is known within a large confidence interval that spans the mass of all red dwarf stars. [1]

    The discovery of the planet MOA-2009-BLG-387Lb was published on February 21, 2011 in the journal Astronomy and Astrophysics by the European Southern Observatory. [1]

    Related Research Articles

    <span class="mw-page-title-main">Rogue planet</span> Planetary objects without a planetary system

    A rogue planet is an interstellar object of planetary mass which is not gravitationally bound to any star or brown dwarf. Rogue planets may originate from planetary systems in which they are formed and later ejected, or they can also form on their own, outside a planetary system. The Milky Way alone may have billions to trillions of rogue planets, a range the upcoming Nancy Grace Roman Space Telescope will likely be able to narrow down.

    <span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

    Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light. Gravitational microlensing was first theorised by Refstal (1964) and first discovered by Irwin et al (1988). The first object in the sky where it was discovered was the Einstein cross or Huchra lens 2237 +0305. The initial lightcurve of the object was published by Corrigan et al (1991). In Corrigan et al (1991) they calculated that the object causing the microlensing was a Jupiter sized object. This was the first discovery of a planet in another galaxy.

    <span class="mw-page-title-main">Farm Cove Observatory</span> Observatory

    Farm Cove Observatory (FCO) is an amateur astronomical observatory in Pakuranga, Auckland, New Zealand, where Jennie McCormick discovered the main-belt asteroid 386622 New Zealand in September 2009.

    <span class="mw-page-title-main">OGLE-2005-BLG-390Lb</span> Super-Earth orbiting OGLE-2005-BLG-390L

    OGLE-2005-BLG-390Lb is a super-Earth exoplanet orbiting OGLE-2005-BLG-390L, a star 21,500 ± 3,300 light-years from Earth near the center of the Milky Way, making it one of the most distant planets known. On January 25, 2006, Probing Lensing Anomalies NETwork/Robotic Telescope Network (PLANET/Robonet), Optical Gravitational Lensing Experiment (OGLE), and Microlensing Observations in Astrophysics (MOA) made a joint announcement of the discovery. The planet does not appear to meet conditions presumed necessary to support life.

    <span class="mw-page-title-main">OGLE-2005-BLG-390L</span> Star in the constellation Scorpius

    OGLE-2005-BLG-390L is a star thought to be a spectral type M. This dim magnitude 16 galactic bulge star is located in the Scorpius constellation at a far distance of about 21,500 light years.

    <span class="mw-page-title-main">Optical Gravitational Lensing Experiment</span> Long-term variability sky survey

    The Optical Gravitational Lensing Experiment (OGLE) is a Polish astronomical project based at the University of Warsaw that runs a long-term variability sky survey (1992–present). The main goals are the detection and classification of variable stars, discovery of microlensing events, dwarf novae, and studies of the structure of the Galaxy and the Magellanic Clouds. Since the project began in 1992, it has discovered a multitude of extrasolar planets, together with the first planet discovered using the transit method (OGLE-TR-56b) and gravitational microlensing. The project has been led by professor Andrzej Udalski since its inception.

    OGLE-2003-BLG-235L (MOA-2003-BLG-53L) is a star in the constellation of Sagittarius. The first gravitational microlensing event for which a planet orbiting the lens was detected around this star. The event occurred in during July 2003. Two groups observed and independently detected the event: the Optical Gravitational Lensing Experiment (OGLE) and the Microlensing Observations in Astrophysics (MOA), hence, the double designation. It is an orange dwarf star of spectral type K, which is accompanied by a giant planet.

    MACHO-1997-BLG-41, commonly abbreviated as 97-BLG-41 or MACHO-97-BLG-41, was a gravitational microlensing event located in Sagittarius which occurred in July 1999. The source star is likely a giant or subgiant star of spectral type K located at a distance of around 8 kiloparsecs. The lens star is a binary system approximately 10,000 light-years away in the constellation Sagittarius. The two stars are separated from each other by about 0.9 AU and have an orbital period of around 1.5 years. The most likely mass of the system is about 0.3 times that of the Sun. Star A and star B are both red dwarfs.

    OGLE-2005-BLG-071L is a distant, magnitude 19.5 galactic bulge star located in the constellation Scorpius, approximately 11,000 light years away from the Solar System. The star is probably a red dwarf with a mass 43% of that of the Sun.

    RoboNet-1.0 was a prototype global network of UK-built 2-metre robotic telescopes, the largest of their kind in the world, comprising the Liverpool Telescope on La Palma, the Faulkes Telescope North on Maui (Hawaii), and the Faulkes Telescope South in Australia, managed by a consortium of ten UK universities under the lead of Liverpool John Moores University. For the technological aims of integrating a global network to act effectively as a single instrument, and maximizing the scientific return by applying the newest developments in e-Science, RoboNet adopted the intelligent-agent architecture devised and maintained by the eSTAR project.

    <span class="mw-page-title-main">MOA-2007-BLG-192Lb</span> Terrestrial ice planet orbiting MOA-2007-BLG-192L

    MOA-2007-BLG-192Lb, occasionally shortened to MOA-192 b, is an extrasolar planet approximately 3,000 light-years away in the constellation of Sagittarius. The planet was discovered orbiting the brown dwarf or low-mass star MOA-2007-BLG-192L. At a mass of approximately 3.3 times Earth, it is one of the lowest-mass extrasolar planets at the time of discovery. It was found when it caused a gravitational microlensing event on May 24, 2007, which was detected as part of the MOA-II microlensing survey at the Mount John University Observatory in New Zealand.

    MOA-2007-BLG-192L is a low-mass red dwarf star or brown dwarf, approximately 3,000 light-years away in the constellation of Sagittarius. It is estimated to have a mass approximately 6% of the Sun's. In 2008, an Earth-sized extrasolar planet was announced to be orbiting this object.

    MOA-2007-BLG-400L is a star located 22472.1 light-years away in the constellation of Sagittarius. This star is presumed to be a red dwarf with a spectral type of M3V, based on its mass of 0.35 MS.

    MOA-2007-BLG-400Lb is an extrasolar planet located approximately 20000 light-years away in the constellation of Sagittarius, orbiting the star MOA-2007-BLG-400L. This planet was detected on September 18, 2008 by the gravitational microlensing by Dong. It has mass between 50% and 130% of Jupiter and orbits between 0.6 and 1.1 AU.

    The Microlensing Follow-Up Network is an informal group of observers who monitor high magnification gravitational microlensing events in the Milky Way's Galactic Bulge. Its goal is to detect extrasolar planets via microlensing of the parent star by the planet. μFUN is a follow-up network - they monitor microlensing events identified by survey groups such as OGLE and Microlensing Observations in Astrophysics (MOA).

    <span class="mw-page-title-main">MOA-2009-BLG-387L</span> Star in the constellation Sagittarius

    MOA-2009-BLG-387L is a red dwarf in the Sagittarius constellation that is host to the planet MOA-2009-BLG-387Lb. The star is estimated to be nearly 20,000 light years away and approximately one fifth the mass of the Sun, although large confidence intervals exist, reflecting the uncertainties in both the mass and distance. The star drew the attention of astronomers when it became the lens of gravitational microlensing event MOA-2009-BLG-387L, in which it eclipsed a background star and created distorted caustics, an envelope of reflected or refracted light rays. Analysis of the caustic events and of follow-up observational data led to the planet's discovery, which was reported in February 2011.

    MOA-2010-BLG-477L is a star whose existence was detected when it caused a microlensing event in August, 2010. The microlensing event also revealed the existence of a planet orbiting the star. At first the star was thought to be about 0.67 times the mass of the Sun, in the main-sequence phase of its stellar evolution. But by the time the star should have been separated enough in the sky from the source star of the microlensing event it was not detected, implying that it is actually a dim white dwarf star.

    OGLE-2016-BLG-1190Lb is an extremely massive exoplanet, with a mass about 13.4 times that of Jupiter (MJ), or is, possibly, a low mass brown dwarf, orbiting the G-dwarf star OGLE-2016-BLG-1190L, located about 22,000 light years from Earth, in the constellation of Sagittarius, in the galactic bulge of the Milky Way.

    <span class="mw-page-title-main">K2-2016-BLG-0005Lb</span>

    K2-2016-BLG-0005Lb is the most distant exoplanet discovered by the Kepler space telescope, it is the most distant world ever captured by the planet-hunting observatory, twice the distance of its previous record. Its distance is estimated at 16960 light years from the Earth, it was discovered on January 4, 2022 thanks to an effect of gravitational microlensing from a series of data recorded in 2016, then revealed on March 31, 2022.

    References

    1. 1 2 3 4 5 6 7 8 9 Batista, Virginie; et al. (2011). "MOA-2009-BLG-387Lb: A massive planet orbiting an M dwarf". Astronomy and Astrophysics. 529: A102. arXiv: 1102.0558 . Bibcode:2011A&A...529A.102B. doi:10.1051/0004-6361/201016111. S2CID   20954769. Data catalog: Bibcode:2011yCat..35299102B
    2. 1 2 3 4 5 Jean Schneider (2011). "Notes for star MOA-2009-BLG-387L". Extrasolar Planets Encyclopaedia . Retrieved 13 May 2011.