KMT-2022-BLG-0440L b

Last updated
KMT-2022 BLG-0440L b
Discovery [1]
Discovery date2023
Microlensing
Orbital characteristics [1]
1.9±0.7  AU
3.6 yrs
StarKMT-2022-BLG-0440
Physical characteristics [1]
Mass 0.0485+0.0302
−0.0223
  MJ

    KMT-2022-BLG-0440L b is a Neptune-like exoplanet, located 11,415 light years away in the constellation of Sagittarius. It was discovered in 2023. [2]

    Contents

    Characteristics

    Mass and radius

    KMT-2002-BLG-0440L b was discovered by the gravitational microlensing method. This exoplanet's mass is 0.0485+0.302
    −0.0223
      MJ
    or 15.4 Earth mass. The exoplanet has a planet radius of 0.361 times that of Jupiter and its orbital radius is 1.9 AU. [2]

    Orbit

    KMT-2022-BLG-0440L b has a longer orbital period than Earth. The exoplanet has an orbital period of 3.6 years, just like KIC 5951458 b. KMT-2022-BLG-0440L b has a semi-major axis of 1.9±0.7  AU .

    Host star

    The host star of KMT-2022-BLG-0440L b is KMT-2022-BLG-0440L.

    The star type is currently unknown and is not visible with the unaided eye from Earth. The star has a stellar mass of 0.5300 and has 0.53+31
    −26
      M
    .

    See also

    Related Research Articles

    <span class="mw-page-title-main">Terrestrial planet</span> Planet that is composed primarily of silicate rocks or metals

    A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets. The large rocky asteroids Pallas and Vesta are sometimes included as well, albeit rarely. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth, as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

    <span class="mw-page-title-main">Gravitational microlensing</span> Astronomical phenomenon due to the gravitational lens effect

    Gravitational microlensing is an astronomical phenomenon due to the gravitational lens effect. It can be used to detect objects that range from the mass of a planet to the mass of a star, regardless of the light they emit. Typically, astronomers can only detect bright objects that emit much light (stars) or large objects that block background light. These objects make up only a minor portion of the mass of a galaxy. Microlensing allows the study of objects that emit little or no light.

    <span class="mw-page-title-main">OGLE-2005-BLG-390Lb</span> Super-Earth orbiting OGLE-2005-BLG-390L

    OGLE-2005-BLG-390Lb is a super-Earth exoplanet orbiting OGLE-2005-BLG-390L, a star 21,500 ± 3,300 light-years from Earth near the center of the Milky Way, making it one of the most distant planets known. On January 25, 2006, Probing Lensing Anomalies NETwork/Robotic Telescope Network (PLANET/Robonet), Optical Gravitational Lensing Experiment (OGLE), and Microlensing Observations in Astrophysics (MOA) made a joint announcement of the discovery. The planet does not appear to meet conditions presumed necessary to support life.

    <span class="mw-page-title-main">OGLE-2005-BLG-390L</span> Star in the constellation Scorpius

    OGLE-2005-BLG-390L is a star thought to be a spectral type M. This dim magnitude 16 galactic bulge star is located in the Scorpius constellation at a far distance of about 21,500 light years.

    OGLE-2005-BLG-169Lb is an extrasolar planet located approximately 2,700 parsecs away in the constellation of Sagittarius, orbiting the star OGLE-2005-BLG-169L. This planet was discovered by the OGLE project using the gravitational microlensing method. Based on a most likely mass for the host star of 0.49 solar mass (M), the planet has a mass of 13 times that of Earth (MEarth). Its mass and estimated temperature are close to those of Uranus. It is speculated that this planet may either be an ice giant like Uranus, or a "naked super-Earth" with a solid icy or rocky surface.

    <span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

    A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

    MOA-2007-BLG-192L is a low-mass red dwarf star or brown dwarf, approximately 3,000 light-years away in the constellation of Sagittarius. It is estimated to have a mass approximately 6% of the Sun's. In 2008, an Earth-sized extrasolar planet was announced to be orbiting this object.

    MOA-2008-BLG-310Lb is an extrasolar planet which orbits probably the late K-type star MOA-2008-BLG-310L, located at least 20000 light years away in the constellation Scorpius. This planet has mass 23% of Jupiter or 77% of Saturn and orbits at 1.25 AU from the star. This planet was discovered by using the gravitational microlensing method on August 4, 2009. As it is typical for exoplanets detected by microlensing method, the orbital period and eccentricity are not determined.

    The Microlensing Follow-Up Network is an informal group of observers who monitor high magnification gravitational microlensing events in the Milky Way's Galactic Bulge. Its goal is to detect extrasolar planets via microlensing of the parent star by the planet. μFUN is a follow-up network - they monitor microlensing events identified by survey groups such as OGLE and Microlensing Observations in Astrophysics (MOA).

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 January 2024, there are 5,576 confirmed exoplanets in 4,113 planetary systems, with 887 systems having more than one planet. This is a list of the most notable discoveries.

    MOA-2009-BLG-387Lb is an exoplanet in the orbit of the red dwarf MOA-2009-BLG-387L. Its discovery was announced on February 21, 2011, making it the eleventh planet discovered using gravitational microlensing. The planet is thought to be over twice the mass of Jupiter and to have an orbit 80 percent larger than that of Earth's, lasting approximately 1,970 days. However, its exact characteristics are difficult to constrain because the characteristics of the host star are not well known.

    <span class="mw-page-title-main">MOA-2009-BLG-387L</span> Star in the constellation Sagittarius

    MOA-2009-BLG-387L is a red dwarf in the Sagittarius constellation that is host to the planet MOA-2009-BLG-387Lb. The star is estimated to be nearly 20,000 light years away and approximately one fifth the mass of the Sun, although large confidence intervals exist, reflecting the uncertainties in both the mass and distance. The star drew the attention of astronomers when it became the lens of gravitational microlensing event MOA-2009-BLG-387L, in which it eclipsed a background star and created distorted caustics, an envelope of reflected or refracted light rays. Analysis of the caustic events and of follow-up observational data led to the planet's discovery, which was reported in February 2011.

    OGLE-2014-BLG-0124Lb is one of the farthest known planets in the universe. It is approximately 13,000 light years away, located near the center of the galaxy. The planet was discovered using a technique called microlensing. In this case it took 150 days. Two telescopes are used to detect the planet and the time difference between identification by each telescope is used to calculate the distance to the planet. This also contributes to determining the mass of the planet which is about half of Jupiter's. The planet orbits a star with a mass of 0.7 solar masses and is 3.1 AUs from it.

    <span class="mw-page-title-main">OGLE-2007-BLG-349(AB)b</span> Super Neptune orbiting the OGLE-2007-BLG-349 system

    OGLE-2007-BLG-349(AB)b is a circumbinary extrasolar planet about 8,000 light-years away in the constellation of Sagittarius. It is the first circumbinary exoplanet to be discovered using the microlensing method of detecting exoplanets.

    <span class="mw-page-title-main">OGLE-2016-BLG-1195Lb</span> Frigid super-Earth orbiting OGLE-2016-BLG-1195L

    OGLE-2016-BLG-1195Lb is an extrasolar planet located about 22,000 light-years from Earth, in the galactic bulge, orbiting the 0.57±0.06 M star OGLE-2016-BLG-1195L, discovered in 2017. The planet was detected using gravitational microlensing techniques managed by the Korea Astronomy and Space Science Institute and the Spitzer Space Telescope. Initially, it was believed the planet has a mass similar to Earth and is located about the same distance from its host star as the Earth is from the Sun, although it was expected to be much colder.

    OGLE-2016-BLG-1190Lb is an extremely massive exoplanet, with a mass about 13.4 times that of Jupiter (MJ), or is, possibly, a low mass brown dwarf, orbiting the G-dwarf star OGLE-2016-BLG-1190L, located about 22,000 light years from Earth, in the constellation of Sagittarius, in the galactic bulge of the Milky Way.

    <span class="mw-page-title-main">K2-2016-BLG-0005Lb</span>

    K2-2016-BLG-0005Lb is the most distant exoplanet discovered by the Kepler space telescope, it is the most distant world ever captured by the planet-hunting observatory, twice the distance of its previous record. Its distance is estimated at 16960 light years from the Earth, it was discovered on January 4, 2022 thanks to an effect of gravitational microlensing from a series of data recorded in 2016, then revealed on March 31, 2022.

    OGLE-2018-BLG-1119Lb is a Jupiter-like gas giant exoplanet located 5,760 parsecs away, orbiting its host star at a distance of 4.06 AU and taking two years to complete one orbit. It is 0.91 times the mass of Jupiter. It was discovered in 2022 by gravitational microlensing.

    References

    1. 1 2 3 Zhang, Jiyuan; et al. (2023), "KMT-2022-BLG-0440Lb: A new q < 10−4 microlensing planet with the central-resonant caustic degeneracy broken", Monthly Notices of the Royal Astronomical Society, 522 (4): 6055–6069, arXiv: 2301.06779 , doi:10.1093/mnras/stad1398
    2. 1 2 "The Extrasolar Planet Encyclopaedia — KMT-2022-BLG-0440L b". Extrasolar Planets Encyclopaedia . 1995. Retrieved 2023-01-19.