V630 Sagittarii

Last updated
V630 Sagittarii
V630SgrLocation.png
Location of V630 Sagittarii (circled in red)
Observation data
Epoch J2000.0       Equinox J2000.0
Constellation Sagittarius
Right ascension 18h 08m 48.25s
Declination −34° 20 21.4
Apparent magnitude  (V)4.5 - 21.3 [1]
Characteristics
Variable type Nova, [2] VY Scl, and eclipsing [1]
Astrometry
Distance 2000 [3]   pc
Other designations
Nova Sgr 1936c
HD 321353
AAVSO 1802-34
Database references
SIMBAD data
The light curve for V630 Sgr. Data from the AAVSO, Warner (2006) and Gaposchkin (1955) are plotted. V630SgrLightCurve.png
The light curve for V630 Sgr. Data from the AAVSO, Warner (2006) and Gaposchkin (1955) are plotted.

V630 Sagittarii (Nova Sagittarii 1936) was a nova visible to the naked eye in 1936. It was discovered on 3 October 1936 by Shigeki Okabayashi of Kobe, Japan when it had an apparent magnitude of 4.5. [4]

There is disagreement within the astronomical literature about what this nova's peak brightness was. Both Warner [4] and Downes et al. [6] report a peak brightness of magnitude 1.6 but Duerbeck reports 4.0 [3] in rough agreement with the Harrison and Gehrz value of 4.5. [7] The AAVSO database contains no magnitude estimates for this star brighter than 6.5 (on 8 October 1936), indicating that whatever the peak brightness was, the star was barely visible to the naked eye just five days after its discovery. Its light curve shows it to be one of the most rapidly fading novae on record. [5]

Duerbeck estimated that the star's absolute magnitude at peak brightness was −9.3. [3] Diaz and Steiner list it as a possible magnetic nova, due to its short decay time (< 20 days) and large amplitude outburst. [8]

All classical novae are binary systems, with a donor star losing mass onto the surface of a white dwarf. Mróz et al. report that in the case of V630 Sagittarii, the donor star is a main sequence star. [9] Since all classical novae are very close binary systems, they are frequently also eclipsing binaries. Woudt and Warner detected these eclipses, which are 0.4 to 0.6 magnitudes deep, allowing them to derive an orbital period of 2.831 hours. [10] Mróz et al. report the presence of superhumps. [9]

Related Research Articles

<span class="mw-page-title-main">V603 Aquilae</span> 1918 Nova event in the constellation Aquila

V603 Aquilae was a bright nova first observed in the constellation Aquila in 1918. It was the brightest "new star" to appear in the sky since Kepler's Supernova in 1604. Like all novae, it is a binary system, comprising a white dwarf and donor low-mass star in close orbit to the point of being only semidetached. The white dwarf sucks matter off its companion, which has filled its Roche lobe, onto its accretion disk and surface until the excess material is blown off in a thermonuclear event. This material then forms an expanding shell, which eventually thins out and disappears.

<span class="mw-page-title-main">DM Geminorum</span> Nova that appeared in 1903

DM Geminorum also known as Nova Geminorum 1903 was a nova which erupted in the constellation Gemini in 1903. It was discovered by Herbert Hall Turner at the Greenwich Observatory on a Carte du Ciel photographic plate taken on 16 March 1903. Post-discovery examination of earlier photographs of the region taken at the Harvard College Observatory showed that the star was fainter than apparent magnitude 9 on 2 March 1903, and magnitude 5.1 on 6 March 1903, making it visible to the naked eye at that time. It had a conspicuous red color due to strong Hα line emission. By 1 April 1903 it had faded to magnitude 8.5. By 1989 it had reached visual magnitude 17.38.

<span class="mw-page-title-main">DI Lacertae</span> 1910 Nova in the constellation Lacerta

DI Lacertae or Nova Lacertae 1910 was a nova in constellation Lacerta which appeared in 1910. It was discovered by Thomas Henry Espinell Compton Espin at Wolsingham Observatory on 30 Dec 1910, at which time it was an 8th magnitude object. Subsequent examination of pre-discovery photographic plates showed that the outburst occurred sometime between 17 November 1910 and 23 November 1910. It reached a peak brightness of magnitude 4.6 on 26 November 1910, making it visible to the naked eye. Before the nova event DI Lacertae was a 14th magnitude star, and by 1950 it had returned to 14th magnitude.

<span class="mw-page-title-main">V604 Aquilae</span> Nova in the constellation Aquila

V604 Aquilae or Nova Aquilae 1905 is a nova which was first observed in the constellation Aquila in 1905 with a maximum brightness of magnitude 7.6. It was never bright enough to be seen with the naked eye. It was discovered by Williamina Fleming on a Harvard College Observatory photographic plate taken on August 31, 1905. Examination of plates taken earlier indicates that peak brightness occurred in mid-August 1905. The star's quiescent visual band brightness is 19.6.

<span class="mw-page-title-main">V373 Scuti</span> 1975 Nova in the constellation Scutum

V373 Scuti was a nova which appeared in 1975 in the southern constellation of Scutum. It was announced on June 15, 1975 by Paul Wild at the Zimmerwald Observatory, Switzerland. At the time the magnitude was about 7.9. The peak magnitude of 7.1 occurred a month earlier on May 11.

<span class="mw-page-title-main">V1494 Aquilae</span> Nova seen in 1999 in the constellation of Aquila

V1494 Aquilae or Nova Aquilae 1999 b was a nova which occurred during 1999 in the constellation Aquila and reached a brightness of magnitude 3.9 on 2 December 1999. making it easily visible to the naked eye. The nova was discovered with 14×100 binoculars by Alfredo Pereira of Cabo da Roca, Portugal at 18:50 UT on 1 December 1999, when it had a visual magnitude of 6.0.

<span class="mw-page-title-main">QU Vulpeculae</span> 1984 Nova seen in the constellation Vulpecula

QU Vulpeculae, also known as Nova Vulpeculae 1984 Number 2, was the second nova which occurred in 1984 in the constellation Vulpecula. It was discovered by Peter Collins, an amateur astronomer from Cardiff, California at 22:08 UT on 22 December 1984. At the time of its discovery, the nova's apparent magnitude was 6.8. By the next night, Collins reported its brightness had increased to magnitude 5.6, making it visible to the naked eye.

<span class="mw-page-title-main">V1059 Sagittarii</span> Nova seen in 1898 in the constellation Sagittarius

V1059 Sagittarii was a nova, which lit up in 1898 in the constellation Sagittarius. The star reached apparent magnitude 4.5, making it easily visible to the naked eye. It was discovered on 8 March 1898, by Williamina Fleming on a photographic plate taken at the Harvard College Observatory. The discovery plate was an objective prism plate, part of the Henry Draper Memorial Photographs, and Ms Fleming identified it as a nova based on its spectral characteristics.

<span class="mw-page-title-main">V606 Aquilae</span> 1899 nova in the constellation Aquila

V606 Aquilae was a nova, which lit up in the constellation Aquila in 1899. The brightest reported magnitude for this nova was apparent magnitude 5.5, making it a naked eye object. It was discovered by Williamina Fleming on a photographic plate taken on 21 April 1899 at the Harvard College Observatory. On the discovery plate, its photographic magnitude was later determined to be 6.75. It was not seen on the plate taken on 1 November 1898, and there were no reported observations of the region around the star during the 171 day interval before Fleming's discovery, so it is possible that the actual maximum of the event was missed. By 27 October 1899 it had faded to 10th magnitude, and on 9 July 1900 Oliver Wendell reported its brightness to be between magnitude 11.5 and 12.0.

<span class="mw-page-title-main">W Sagittarii</span> Star in the constellation Sagittarius

W Sagittarii is a multiple star system star in the constellation Sagittarius, and a Cepheid variable star.

KW Sagittarii is a red supergiant, located approximately 1,900 parsecs away from the Sun in the direction of the constellation Sagittarius. It is one of the largest-known stars. If placed at the center of the Solar System, the star's surface would engulf Mars.

<span class="mw-page-title-main">XX Tauri</span> 1927 Nova seen in the constellation Taurus

XX Tauri was a nova, which appeared in the constellation Taurus in 1927. It was discovered by Arnold Schwassmann and Arno Arthur Wachmann at Hamburg Observatory on an objective prism photographic plate taken on 18 November 1927. Subsequent examination of pre-discovery photographic plates taken at the Harvard College Observatory showed that the peak brightness, magnitude 5.9, occurred on 1 October 1927, at which point it may have been faintly visible to the naked eye. By 1988 it had faded below magnitude 19.8.

<span class="mw-page-title-main">V1017 Sagittarii</span> Star in the constellation Sagittarius

V1017 Sagittarii is a cataclysmic variable star system in the constellation Sagittarius. It first erupted in 1919, reaching magnitude 7. Its other eruptions in 1901, 1973 and 1991 only reached magnitude 10, leading it to be reclassified from a recurrent nova to a dwarf nova.

<span class="mw-page-title-main">V5856 Sagittarii</span> Nova that occurred in 2016

V5856 Sagittarii, also known as Nova Sagittarii 2016 Number 4, was the 4th and brightest nova that occurred in the constellation Sagittarius during 2016. It was discovered by the All Sky Automated Survey for SuperNovae on 25.02 October 2016, at which time it had an apparent visual magnitude of 13.7. It was independently discovered by Yukio Sakurai of Mito, Ibaraki, Japan on 26.38 October 2016, by which time it had reached magnitude 10.4. It reached its peak brightness of magnitude 5.4, making it visible to the naked eye, on 8 November 2016. The nova occurred within a region of the sky monitored by the OGLE microlensing experiment, and that group reported that no star brighter than magnitude 22 was seen at the nova's position prior to its eruption.

<span class="mw-page-title-main">V841 Ophiuchi</span> Nova seen in 1848 in the constellation Ophiuchus

V841 Ophiuchi was a bright nova discovered by John Russell Hind on 27 April 1848. It was the first object of its type discovered since 1670. At the time of its discovery, it had an apparent magnitude of 5.6, but may have reached magnitude 2 at its peak, making it easily visible to the naked eye. Near peak brightness it was described as "bright red" or "scarlet", probably due to Hα line emission. Its brightness is currently varying slowly around magnitude 13.5. The area of the sky surrounding this nova had been examined frequently by astronomers prior to the nova's discovery, because it was near the reported location of "52 Serpentis", a star John Flamsteed had included in his catalogue with erroneous coordinates.

<span class="mw-page-title-main">V Persei</span> Nova event seen in 1887 in the constellation Perseus

V Persei, also known as Nova Persei 1887 was discovered by Williamina Fleming on a Harvard College Observatory objective-prism photograph taken on 3 November 1887. It is believed to be the first nova whose spectrum was recorded. The nova had an apparent magnitude of 9.2 at the time of discovery. Judging from the consistency of the nova's brightness after discovery, and details of the spectral lines seen, McLaughlin estimated that the nova was five or six months past peak brightness at the time of its discovery, and at its peak it was almost certainly at least as bright as 4th magnitude. So V Persei was probably visible to the naked eye, though there is no record that anyone actually noticed it when that was possible. It is currently an 18th magnitude object.

<span class="mw-page-title-main">QZ Aurigae</span> Nova seen in 1964

QZ Aurigae, also known as Nova Aurigae 1964, was a nova which occurred in the constellation Auriga during 1964. It was discovered by Nicholas Sanduleak on an objective prism photographic plate taken at the Warner and Swasey Observatory on 4 November 1964. Examination of pre-discovery plates from Sonneberg Observatory showed that the eruption occurred in early February 1964, and it had a photographic magnitude of 6.0 on 14 February 1964. Its brightness declined in images taken after the 14th, suggesting that its peak brightness was above 6.0. It was probably visible to the naked eye for a short time.

<span class="mw-page-title-main">GI Monocerotis</span> 1918 Nova in the constellation Monoceros

GI Monocerotis, also known as Nova Monocerotis 1918, was a nova that erupted in the constellation Monoceros during 1918. It was discovered by Max Wolf on a photographic plate taken at the Heidelberg Observatory on 4 February 1918. At the time of its discovery, it had a photographic magnitude of 8.5, and had already passed its peak brightness. A search of plates taken at the Harvard College Observatory showed that it had a photographic magnitude of 5.4 on 1 January 1918, so it would have been visible to the naked eye around that time. By March 1918 it had dropped to ninth or tenth magnitude. By November 1920 it was a little fainter than 15th magnitude.

<span class="mw-page-title-main">V4332 Sagittarii</span>

V4332 Sagittarii is a nova-like event in the constellation of Sagittarius. It was discovered February 24, 1994 at an apparent visual magnitude of 8.9 by Japanese amateur astronomer Minoru Yamamoto from Okazaki, Aichi, then confirmed by K. Hirosawa. Initially designated Nova Sagittarii 1994 #1, it was given the variable star designation V4332 Sgr. A spectra of the event taken March 4 lacked the characteristic features of a classical nova, with the only emission lines being of the Balmer series. Subsequent spectra showed a rapid decline in luminosity and a change of spectral type over a period of five days. By 2003, the object was ~1500 times less luminous than at peak magnitude and showed a spectrum of an M-type star.

<span class="mw-page-title-main">OY Arae</span> 1910 nova in the constellation Ara

OY Arae, also known as Nova Arae 1910, is a nova in the constellation Ara. It was discovered by Williamina Fleming on a Harvard Observatory photographic plate taken on April 4, 1910. At that time it had a magnitude of 6.0, making it faintly visible to the naked eye under ideal observing conditions. Examination of earlier plates showed that before the outburst it was a magnitude 17.5 object, and by March 19, 1910, it had reached magnitude 12.

References

  1. 1 2 "V630 Sgr". International Variable Star Index. American Association of Variable Star Observers . Retrieved 2020-12-01.
  2. Warner, B. (1 July 1987). "Absolute magnitudes of cataclysmic variables". Monthly Notices of the Royal Astronomical Society . 227: 23–73. Bibcode:1987MNRAS.227...23W. doi: 10.1093/mnras/227.1.23 .
  3. 1 2 3 Duerbeck, H.W. (April 1981). "Light curve types, absolute magnitudes, and physical properties of galactic novae". Publications of the Astronomical Society of the Pacific . 93 (552): 165. Bibcode:1981PASP...93..165D. doi: 10.1086/130799 . S2CID   121397724.
  4. 1 2 3 Warner, B. (February 2006). "Where have all the novae gone?". Astronomy & Geophysics . 47 (1): 29–32. Bibcode:2006A&G....47a..29W. doi: 10.1111/j.1468-4004.2006.47129.x .
  5. 1 2 Gaposchkin, S. (1955). "Notes and observations: Nova Sagittarii 1936". Astronomical Journal . 60: 454. Bibcode:1955AJ.....60..454G. doi:10.1086/107259.
  6. Downes, Ronald; Webbink, Ronald F.; Shara, Michael M. (April 1997). "A Catalog and Atlas of Cataclysmic Variables-Second Edition". Publications of the Astronomical Society of the Pacific. 109 (734): 345–440. Bibcode:1997PASP..109..345D. doi: 10.1086/133900 . S2CID   120396435.
  7. Harrison, T.E.; Gehrz, R.D. (February 1991). "IRAS observations of classical novae. II - Modeling the detections". Astronomical Journal . 101: 587–599. Bibcode:1991AJ....101..587H. doi:10.1086/115708.
  8. Diaz, M.P.; Steiner, J.E. (September 1991). "UBVRI photometry of CP Puppis - A magnetic nova?". Publications of the Astronomical Society of the Pacific . 103: 964–968. Bibcode:1991PASP..103..964D. doi: 10.1086/132913 .
  9. 1 2 Mróz, P.; Udalski, A.; Poleski, R.; Soszyński, I.; Szymański, M.K.; Pietrzyński, G.; Wyrzykowski, L.; Ulaczyk, K.; Kozłowski, S.; Pietrukowicz, P.; Skowron, J. (August 2015). "Ogle Atlas of Classical Novae. I. Galactic Bulge Objects". The Astrophysical Journal Supplement Series. 219 (2): 26. arXiv: 1504.08224 . doi: 10.1088/0067-0049/219/2/26 .
  10. Woudt, Patrick A.; Warner, Brian (November 2001). "High-speed photometry of faint cataclysmic variables - I. V359 Cen, XZ Eri, HY Lup, V351 Pup, V630 Sgr, YY Tel, CQ Vel and CE-315". Monthly Notices of the Royal Astronomical Society. 328 (1): 159–166. arXiv: astro-ph/0107505 . doi: 10.1046/j.1365-8711.2001.04857.x .