OGLE-TR-10b

Last updated
OGLE-TR-10b
Exoplanet Comparison OGLE-TR-10 b.png
Size comparison of OGLE-TR-10b with Jupiter.
Discovery
Discovered by Konacki et al.
Discovery site Las Campanas Observatory in Chile
Discovery dateDec 20, 2002
Transit
Orbital characteristics
0.04162 ± 0.00004 AU (6,226,300 ± 6,000 km)
3.10129 ± 0.00001 d
Inclination 84.5 ± 0.6
Semi-amplitude 100 ± 43
Star OGLE-TR-10
Physical characteristics
Mean radius
1.26 ± 0.07 RJ
Mass 0.63 ± 0.14 MJ
Mean density
420  kg/m3 (710  lb/cu yd)
0.94 g

    OGLE-TR-10b is an extrasolar planet orbiting the star OGLE-TR-10.

    The planet was first detected by the Optical Gravitational Lensing Experiment (OGLE) survey in 2002. The star, OGLE-TR-10, was seen dimming by a tiny amount every three days. The transit lightcurve resembles that of HD 209458 b, the first transiting extrasolar planet. However, the mass of the object had to be measured by the radial velocity method because other objects like red dwarfs and brown dwarfs can mimic the planetary transit. In late 2004 it was confirmed as the fifth planetary discovery by OGLE. [1]

    The planet is a typical "hot Jupiter", a planet with a mass half that of Jupiter and orbital distance only 1/24 that of Earth from the Sun. One revolution around the star takes a little over three days to complete. The planet is slightly larger than Jupiter, probably due to the heat from the star.

    OGLE-TR-10 was identified as a promising candidate by the OGLE team during their 2001 campaign in three fields towards the Galactic Center. [2] The possible planetary nature of its companion was based on spectroscopic follow-up. [1] A reported a tentative radial velocity semi-amplitude (from Keck-I/HIRES) of 100±43 m/s, and a mass for the putative planet of 0.7 ± 0.3 MJup was confirmed in 2004 with the UVES/FLAMES radial velocities. However, the possibility of a blend could not be ruled out. [3]

    A blend scenario as an alternative explanation from an analysis combining all available radial velocity measurements with the OGLE light curve. OGLE-TR-10b has a mass of 0.57 ± 0.12 MJup and a radius of 1.24 ± 0.09 RJup. These parameters bear close resemblance to those of the first known transiting extrasolar planet, HD 209458 b. [4]

    The planets with the longer periods in the hot Jupiter class all have small masses (~0.7 MJup), while all the short-period planets (i.e., very hot Jupiters) have masses roughly twice as large. This trend may be related to the survival of planets in proximity to their parent stars. [5]

    Related Research Articles

    <span class="mw-page-title-main">HD 209458 b</span> Exoplanet in the constellation Auriga

    HD 209458 b, which is also nicknamed Osiris after the Egyptian god, is an exoplanet that orbits the solar analog HD 209458 in the constellation Pegasus, some 159 light-years from the Solar System. The radius of the planet's orbit is 0.047 AU, or one-eighth the radius of Mercury's orbit. This small radius results in a year that is 3.5 Earth-days long and an estimated surface temperature of about 1,000 °C. Its mass is 220 times that of Earth and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant.

    <span class="mw-page-title-main">HD 209458</span> Star in the constellation Pegasus

    HD 209458 is an 8th-magnitude star in the constellation Pegasus. It is a G0V star, and is thus very similar to the Sun. Because it is located at a distance of about 159 light years, it is not visible to the unaided eye. With good binoculars or small telescope it should be easily detectable.

    <span class="mw-page-title-main">TrES-1b</span> Hot Jupiter orbiting TrES-1 in the constellation of Lyra

    TrES-1b is an extrasolar planet approximately 523 light-years away in the constellation of Lyra. The planet's mass and radius indicate that it is a Jovian planet with a similar bulk composition to Jupiter. Unlike Jupiter, but similar to many other planets detected around other stars, TrES-1 is located very close to its star, and belongs to the class of planets known as hot Jupiters. The planet was discovered orbiting around GSC 02652-01324.

    <span class="mw-page-title-main">Gliese 876</span> Star in the constellation Aquarius

    Gliese 876 is a red dwarf approximately 15 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after Gliese 1061, YZ Ceti, Tau Ceti, and Luyten's Star; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.

    OGLE-TR-111 is a yellow dwarf star approximately 5,000 light-years away in the constellation of Carina. Having an apparent magnitude of about 17, this distant and dim star has not yet been cataloged. Because its apparent brightness changes when one of its planets transits, the star has been given the variable star designation V759 Carinae.

    <span class="mw-page-title-main">OGLE-TR-10</span> Star in the constellation Sagittarius

    OGLE-TR-10 is a distant, magnitude 16 star in the constellation of Sagittarius. It is located near the Galactic Center. This star is listed as an eclipsing type variable star with the eclipse due to the passage of the planet as noted in the discovery papers.

    OGLE-TR-132 is a distant magnitude 15.72 star in the star fields of the constellation Carina. Because of its great distance, about 4,900 light-years, and location in the crowded field it was not notable in any way. Because its apparent brightness changes when one of its planets transits, the star has been given the variable star designation V742 Carinae. The spectral type of the star is type F. A yellow-white, very metal-rich dwarf star, it is slightly hotter and more luminous than the Sun.

    HD 1237 is a binary star system approximately 57 light-years away in the constellation of Hydrus.

    <span class="mw-page-title-main">Optical Gravitational Lensing Experiment</span> Long-term variability sky survey

    The Optical Gravitational Lensing Experiment (OGLE) is a Polish astronomical project based at the University of Warsaw that runs a long-term variability sky survey (1992–present). The main goals are the detection and classification of variable stars, discovery of microlensing events, dwarf novae, and studies of the structure of the Galaxy and the Magellanic Clouds. Since the project began in 1992, it has discovered a multitude of extrasolar planets, together with the first planet discovered using the transit method (OGLE-TR-56b) and gravitational microlensing. The project has been led by professor Andrzej Udalski since its inception.

    OGLE-TR-56 is a dim, distant, magnitude 17 Sun-like star located approximately 1,500 parsecs away in the constellation of Sagittarius. This star is listed as an eclipsing type variable star with the eclipse due to the passage of the planet as noted in the discovery papers.

    <span class="mw-page-title-main">OGLE-TR-56b</span> Hot Jupiter orbiting OGLE-TR-56

    OGLE-TR-56b is an extrasolar planet located approximately 1500 parsecs or 5000 light years away in the constellation of Sagittarius, orbiting the star OGLE-TR-56. This planet was the first known exoplanet to be discovered with the transit method. The object was discovered by the OGLE project, announced on July 5, 2002 and confirmed on January 4, 2003 by the Doppler technique. The period of this confirmed planet was the shortest until the confirmed discovery of WASP-12b on April 1, 2008. The short period and proximity of the OGLE-TR-56 b to its host mean it belongs to a class of objects known as hot Jupiters.

    <span class="mw-page-title-main">XO-1b</span> Extrasolar planet in the constellation Corona Borealis

    XO-1b is an extrasolar planet approximately 536 light-years away from Earth.

    <span class="mw-page-title-main">Methods of detecting exoplanets</span> Overview of methods of detecting exoplanets

    Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of April 2014 have been observed directly, with even fewer being resolved from their host star.

    <span class="mw-page-title-main">WASP-2b</span> Extrasolar planet in the constellation Delphinus

    WASP-2b is an extrasolar planet orbiting the star WASP-2 located about 500 light years away in the constellation of Delphinus. It was discovered via the transit method, and then follow up measurements using the radial velocity method confirmed that WASP-2b was a planet. The planet's mass and radius indicate that it is a gas giant with a similar bulk composition to Jupiter. Unlike Jupiter, but similar to many other planets detected around other stars, WASP-2b is located very close to its star, and belongs to the class of planets known as hot Jupiters. A 2008 study concluded that the WASP-2b system is a binary star system allowing even more accurate determination of stellar and planetary parameters.

    OGLE-TR-113 is a dim, distant magnitude 16 binary star in the star fields of the constellation Carina. Because of its distance of about 1170 light years, and location in a crowded field it was not notable in any way. Its apparent brightness changes when one of its planets transits, so the star has been given the variable star designation V752 Carinae. Spectral type of the star is type K dwarf star, slightly cooler and less luminous than the Sun.

    <span class="mw-page-title-main">Sagittarius Window Eclipsing Extrasolar Planet Search</span>

    The Sagittarius Window Eclipsing Extrasolar Planet Search, or SWEEPS, was a 2006 astronomical survey project using the Hubble Space Telescope's Advanced Camera for Surveys - Wide Field Channel to monitor 180,000 stars for seven days to detect extrasolar planets via the transit method.

    <span class="mw-page-title-main">OGLE-TR-113b</span> Extrasolar planet orbiting the star OGLE-TR-113

    OGLE-TR-113b is an extrasolar planet orbiting the star OGLE-TR-113.

    <span class="mw-page-title-main">OGLE-TR-111b</span> Hot Jupiter orbiting OGLE-TR-111

    OGLE-TR-111b is an extrasolar planet approximately 5,000 light-years away in the constellation of Carina. The planet is currently the only confirmed planet orbiting the star OGLE-TR-111.

    <span class="mw-page-title-main">OGLE-TR-132b</span>

    OGLE-TR-132b is an extrasolar planet orbiting the star OGLE-TR-132.

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 February 2023, there are 5,307 confirmed exoplanets in 3,910 planetary systems, with 853 systems having more than one planet. This is a list of the most notable discoveries.

    References

    1. 1 2 Konacki, Maciej; et al. (2005). "A Transiting Extrasolar Giant Planet around the Star OGLE-TR-10". The Astrophysical Journal. 624 (1): 372–377. arXiv: astro-ph/0412400 . Bibcode:2005ApJ...624..372K. doi:10.1086/429127. S2CID   250894455.
    2. Udalski, A.; et al. (2002). "The Optical Gravitational Lensing Experiment. Search for Planetary and Low-Luminosity Object Transits in the Galactic Disk. Results of 2001 Campaign". Acta Astronomica. 52 (1): 1–37. arXiv: astro-ph/0202320 . Bibcode:2002AcA....52....1U.
    3. Bouchy, F.; et al. (2005). "Doppler follow-up of OGLE transiting companions in the Galactic bulge". Astronomy and Astrophysics. 431 (3): 1105–1121. arXiv: astro-ph/0410346 . Bibcode:2005A&A...431.1105B. doi:10.1051/0004-6361:20041723. S2CID   18422673.
    4. Pont, F.; et al. (2007). "The "666" collaboration on OGLE transits I. Accurate radius of the planets OGLE-TR-10b and OGLE-TR-56b with VLT deconvolution photometry". Astronomy and Astrophysics. 465 (3): 1069–1074. arXiv: astro-ph/0610827 . Bibcode:2007A&A...465.1069P. doi:10.1051/0004-6361:20066645. S2CID   115760695.
    5. Mazeh, Tsevi; et al. (2005). "An intriguing correlation between the masses and periods of the transiting planets". Monthly Notices of the Royal Astronomical Society . 356 (3): 955–957. arXiv: astro-ph/0411701 . Bibcode:2005MNRAS.356..955M. doi:10.1111/j.1365-2966.2004.08511.x. S2CID   9849951.

    Commons-logo.svg Media related to OGLE-TR-10b at Wikimedia Commons