Kepler-10b

Last updated

Kepler-10b
Exoplanet Comparison Kepler-10 b.png
Size comparison of Kepler-10b with Earth
Discovery [1]
Discovered by Batalha et al.
Discovery dateJanuary 10, 2011
Transit (Kepler Mission)
Orbital characteristics
0.01684 +0.00032
0.00034
[1] AU
Eccentricity 0 [1]
0.837495 [1] d
20.0999 h
Inclination 84.4 [1]
Semi-amplitude 3.3 +0.8
1.0
[1]
Star Kepler-10 [2]
Physical characteristics
Mean radius
1.47+0.03
0.02
[3] R🜨
Mass 3.72±0.42 [4] M🜨
Mean density
6.46±0.73 g/cm3 [4]
15  m/s2 (49  ft/s2) [3]
Albedo 0.5
Temperature 1,833 K (1,560 °C; 2,840 °F) (day side)
50 K (−223.2 °C; −369.7 °F) (night side) [5]

    Kepler-10b is the first confirmed terrestrial planet to have been discovered outside the Solar System by the Kepler Space Telescope. [6] Discovered after several months of data collection during the course of the NASA-directed Kepler Mission, which aims to discover Earth-like planets crossing in front of their host stars, the planet's discovery was announced on January 10, 2011. Kepler-10b has a mass of 3.72±0.42 Earth masses and a radius of 1.47 Earth radii. However, it lies extremely close to its star, Kepler-10, and as a result is too hot to support life as we know it. Its existence was confirmed using measurements from the W.M. Keck Observatory in Hawaii.

    Contents

    Nomenclature and history

    Kepler-10, the star that hosts Kepler-10b, is located 560 light-years from the Solar System in the Draco constellation. It is approximately the same size as the Sun, with an estimated age of 12 billion years. [7] Planet Kepler-10b was the first planet to be discovered in the orbit of its star. For this, it was designated the star's b planet. The star, in turn, was named for the Kepler Mission, a NASA-led operation aimed at discovering terrestrial planets that transit, or cross in front of, their host stars with respect to Earth. [8] The planet's discovery was announced to the public on January 10, 2011. [9]

    The light curve for Kepler-10b, demonstrating the dimming effect as it transits its star Lightcurve20090111Kepler-10b.jpg
    The light curve for Kepler-10b, demonstrating the dimming effect as it transits its star

    The transit method of discovering exoplanets relies upon carefully monitoring the brightness of a star. If a planet is present and crosses the line of sight between Earth and the star, the star will dim at a regular interval by an amount that depends upon the radius of the transiting planet. In order to measure the mass of a planet, and rule out other phenomena that can mimic the presence of a planet transiting a star, candidate transiting planets are followed up with the radial velocity method of detecting extrasolar planets. [10]

    Kepler-10b's discovery was based on eight months of data collected with the Kepler telescope from May 2009 to January 2010. The planet's first transits were observed in July 2009. According to the collected data, Kepler-10 dimmed by one part in ten thousand every 0.83 days. [11] [12] Kepler-10 was the first star in the field of view of the Kepler telescope identified as capable of harboring a small transiting planet, and was considered a high priority target for ground-based radial velocity observations intended to confirm the mass of Kepler-10b. Radial velocity measurements with the Keck I telescope taken intermittently between August 2009 and August 2010 revealed a periodic Doppler shift in the spectrum of Kepler-10 consistent with a planet of the nature observed by Kepler, confirming the planet's existence and allowing its mass to be determined. [1] [11] The planet's discovery was announced to the public on January 10, 2011. [9]

    In September 2011, the detection of secondary transit and phases were announced. This allowed to determine the temperature and albedo of the planet. This is the first terrestrial exoplanet with observed phases. Detection of phases was possible due to extreme day/night side temperature variations and the amount of starlight the planet receives due to its proximity to the host star. [13]

    Reaction

    Kepler-10b's discovery excited astronomers, who hoped to use data about it to inquire into the formation and structure that terrestrial, Earth-size planets tend to have in common. [14] Diana Valencia at the University of Côte d'Azur in Nice, France considered the planet more of a "super-Mercury" than a super-Earth, granted its physical characteristics. [15]

    Characteristics

    Diagram showing composition of Kepler-10b in comparison with other planets and exoplanets CompositionOfKepler-10b.jpg
    Diagram showing composition of Kepler-10b in comparison with other planets and exoplanets

    Kepler-10b is most noted for its rocky surface. It has a diameter 1.47 times that of the Earth. [3] The mass of Kepler-10b is 3.72±0.42 times that of Earth and the average density is 6.46±0.73 g cm−3. [4] It orbits its star, Kepler-10, in less than a day, at less than a twentieth of the distance from Mercury to the Sun. Its surface temperature on the star lit side is approximately 1833  K, [16] which is as hot as a blast furnace and hot enough to melt iron. [12]

    Though CoRoT-7b was discovered before Kepler-10b and has been claimed to be rocky, there is more room for other interpretations in the case of CoRoT-7b's composition than there is for Kepler-10b, due to its highly uncertain mass — for example, it could be predominantly water rather than rock and iron. [12]

    Kepler-10b is tidally locked to its parent star and has extreme variations in temperature between day and night sides. It also reflects about half of the starlight it receives. One possible explanation for the high Bond albedo could be that Kepler-10b is a coreless rocky planet with surface magma oceans rich in iron oxides. [17]

    See also

    Related Research Articles

    <span class="mw-page-title-main">Kepler space telescope</span> NASA satellite for exoplanetology (2009–2018)

    The Kepler space telescope is a disused space telescope launched by NASA in 2009 to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric orbit. The principal investigator was William J. Borucki. After nine and a half years of operation, the telescope's reaction control system fuel was depleted, and NASA announced its retirement on October 30, 2018.

    <span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

    A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

    <span class="mw-page-title-main">HAT-P-7b</span> Super Jupiter orbiting HAT-P-7

    HAT-P-7b is an extrasolar planet discovered in 2008. It orbits very close to its host star and is larger and more massive than Jupiter. Due to the extreme heat that it receives from its star, the dayside temperature is predicted to be 2,630–2,880 K K, while nightside temperatures are 2,211–2,238 K. HAT-P-7b is also one of the darkest planets ever observed, with an albedo of less than 0.03—meaning it absorbs more than 97% of the visible light that strikes it.

    <span class="mw-page-title-main">CoRoT-7b</span> Hot Super-Earth orbiting CoRoT-7

    CoRoT-7b is an exoplanet orbiting the star CoRoT-7 in the constellation of Monoceros, 489 light-years from Earth. It was first detected photometrically by the French-led CoRoT mission and reported in February 2009. Until the announcement of Kepler-10b in January 2011, it was the smallest exoplanet to have its diameter measured, at 1.58 times that of the Earth and the first potential extrasolar terrestrial planet to be found. The exoplanet has a very short orbital period, revolving around its host star in about 20 hours.

    <span class="mw-page-title-main">Kepler-7b</span> Hot Jupiter orbiting Kepler-7

    Kepler-7b is one of the first five exoplanets to be confirmed by NASA's Kepler spacecraft, and was confirmed in the first 33.5 days of Kepler's science operations. It orbits a star slightly hotter and significantly larger than the Sun that is expected to soon reach the end of the main sequence. Kepler-7b is a hot Jupiter that is about half the mass of Jupiter, but is nearly 1.5 times its size; at the time of its discovery, Kepler-7b was the second most diffuse planet known, surpassed only by WASP-17b. It orbits its host star every five days at a distance of approximately 0,06 AU. Kepler-7b was announced at a meeting of the American Astronomical Society on January 4, 2010. It is the first extrasolar planet to have a crude map of cloud coverage.

    <span class="mw-page-title-main">Kepler-4b</span> Extrasolar planet in the constellation Draco

    Kepler-4b, initially known as KOI 7.01, is an extrasolar planet first detected as a transit by the Kepler spacecraft. Its radius and mass are similar to that of Neptune; however, due to its proximity to its host star, it is substantially hotter than any planet in the Solar System. The planet's discovery was announced on January 4, 2010, in Washington, D.C., along with four other planets that were initially detected by the Kepler spacecraft and subsequently confirmed by telescopes at the W.M. Keck Observatory.

    <span class="mw-page-title-main">Kepler-5b</span> Extrasolar planet

    Kepler-5b is one of the first five planets discovered by NASA's Kepler spacecraft. It is a Hot Jupiter that orbits a subgiant star that is more massive, larger, and more diffuse than the Sun is. Kepler-5 was first flagged as the location of a possibly transiting planet, and was reclassified as a Kepler Object of Interest until follow-up observations confirmed the planet's existence and many of its characteristics. The planet's discovery was announced at a meeting of the American Astronomical Society on January 4, 2010. The planet has approximately twice the mass of Jupiter, and is about 1.5 times larger. It is also fifteen times hotter than Jupiter. Kepler-5b orbits Kepler-5 every 3.5 days at a distance of approximately 0.051 AU.

    <span class="mw-page-title-main">Kepler-6b</span> Extrasolar planet orbiting Kepler-6

    Kepler-6b is an extrasolar planet in the orbit of the unusually metal-rich Kepler-6, a star in the field of view of the NASA-operated Kepler spacecraft, which searches for planets that cross directly in front of, or transit, their host stars. It was the third planet to be discovered by Kepler. Kepler-6 orbits its host star every three days from a distance of .046 AU. Its proximity to Kepler-6 inflated the planet, about two-thirds the mass of Jupiter, to slightly larger than Jupiter's size and greatly heated its atmosphere.

    <span class="mw-page-title-main">Kepler-8b</span> Extrasolar planet

    Kepler-8b is the fifth of the first five exoplanets discovered by NASA's Kepler spacecraft, which aims to discover planets in a region of the sky between the constellations Lyra and Cygnus that transit their host stars. The planet is the hottest of the five. Kepler-8b was the only planet discovered in Kepler-8's orbit, and is larger than Jupiter. It orbits its host star every 3.5 days. The planet also demonstrates the Rossiter–McLaughlin effect, where the planet's orbit affects the redshifting of the spectrum of the host star. Kepler-8b was announced to the public on January 4, 2010 at a conference in Washington, D.C. after radial velocity measurements conducted at the W.M. Keck Observatory confirmed its detection by Kepler.

    <span class="mw-page-title-main">Kepler-7</span> Sun-like star located in the constellation Lyra

    Kepler-7 is a star located in the constellation Lyra in the field of view of the Kepler Mission, a NASA operation in search of Earth-like planets. It is home to the fourth of the first five planets that Kepler discovered; this planet, a Jupiter-size gas giant named Kepler-7b, is as light as styrofoam. The star itself is more massive than the Sun, and is nearly twice the Sun's radius. It is also slightly metal-rich, a major factor in the formation of planetary systems. Kepler-7's planet was presented on January 4, 2010 at a meeting of the American Astronomical Society.

    <span class="mw-page-title-main">Kepler-9c</span> Extrasolar planet

    Kepler-9c is one of the first seven extrasolar planets, exoplanets, discovered by NASA's Kepler Mission, and one of at least two planets orbiting the star Kepler-9. Kepler-9c and Kepler-9b were the first exoplanets confirmed to be transiting their star. The planet's discovery was announced by the Kepler Mission team on August 26, 2010 after its initial discovery by Kepler. At the time, it was one of 700 planetary candidates noted by Kepler.

    <span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

    An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 October 2023, there are 5,506 confirmed exoplanets in 4,065 planetary systems, with 878 systems having more than one planet. This is a list of the most notable discoveries.

    <span class="mw-page-title-main">Kepler-10</span> Sunlike star in the constellation Draco

    Kepler-10, formerly known as KOI-72, is a Sun-like star in the constellation of Draco that lies 607 light-years from Earth. Kepler-10 was targeted by NASA's Kepler spacecraft, as it was seen as the first star identified by the Kepler mission that could be a possible host to a small, transiting exoplanet. The star is slightly less massive, slightly larger, and slightly cooler than the Sun; at an estimated 11.9 billion years in age, Kepler-10 is almost 2.6 times the age of the Sun.

    <span class="mw-page-title-main">Kepler-10c</span> Exoplanet in the constellation Draco

    Kepler-10c is an exoplanet orbiting the G-type star Kepler-10, located around 608 light-years away in Draco. Its discovery was announced by Kepler in May 2011, although it had been seen as a planetary candidate since January 2011, when Kepler-10b was discovered. The team confirmed the observation using data from NASA's Spitzer Space Telescope and a technique called BLENDER that ruled out most false positives. Kepler-10c was the third transiting planet to be confirmed statistically, after Kepler-9d and Kepler-11g. The Kepler team considers the statistical method that led to the discovery of Kepler-10c as what will be necessary to confirm many planets in Kepler's field of view.

    <span class="mw-page-title-main">Kepler-22b</span> Super-Earth exoplanet orbiting Kepler-22

    Kepler-22b is an exoplanet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 640 light-years from Earth in the constellation of Cygnus. It was discovered by NASA's Kepler Space Telescope in December 2011 and was the first known transiting planet to orbit within the habitable zone of a Sun-like star, where liquid water could exist on the planet's surface. Kepler-22 is too dim to be seen with the naked eye.

    <span class="mw-page-title-main">Kepler-62e</span> Habitable-zone super-Earth planet orbiting Kepler-62

    Kepler-62e is a super-Earth exoplanet discovered orbiting within the habitable zone of Kepler-62, the second outermost of five such planets discovered by NASA's Kepler spacecraft. Kepler-62e is located about 990 light-years from Earth in the constellation of Lyra. The exoplanet was found using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Kepler-62e may be a terrestrial or ocean-covered planet; it lies in the inner part of its host star's habitable zone.

    <span class="mw-page-title-main">Kepler-452b</span> Super-Earth exoplanet orbiting Kepler-452

    Kepler-452b is a super-Earth exoplanet orbiting within the inner edge of the habitable zone of the sun-like star Kepler-452 and is the only planet in the system discovered by Kepler. It is located about 1,800 light-years (550 pc) from Earth in the constellation of Cygnus.

    <span class="mw-page-title-main">Kepler-452</span> G-type main-sequence star in the constellation Cygnus

    Kepler-452 is a G-type main-sequence star located about 1,800 light-years away from Earth in the Cygnus constellation. Although similar in temperature to the Sun, it is 20% brighter, 3.7% more massive and 11% larger. Alongside this, the star is approximately six billion years old and possesses a high metallicity. Thus, Kepler-452 can be considered a solar twin, although it could be considered a solar analog due to its age.

    K2-141b is a massive rocky exoplanet orbiting extremely close to an orange main-sequence star K2-141. The planet was first discovered by the Kepler space telescope during its K2 “Second Light” mission and later observed by the HARPS-N spectrograph. It is classified as an Ultra-short Period (USP) and is confirmed to be terrestrial in nature. Its high density implies a massive iron core taking up between 30% and 50% of the planet's total mass.

    References

    1. 1 2 3 4 5 6 7 Batalha, Natalie M.; et al. (2011). "Kepler's First Rocky Planet: Kepler-10b". The Astrophysical Journal. 729 (1): 27. arXiv: 1102.0605 . Bibcode:2011ApJ...729...27B. doi:10.1088/0004-637X/729/1/27. S2CID   55059000.
    2. "Summary Table of Kepler Discoveries". NASA. 2010-08-26. Archived from the original on 2010-05-27. Retrieved 2010-09-01.
    3. 1 2 3 The Kepler-10 planetary system revisited by HARPS-N: A hot rocky world and a solid Neptune-mass planet, Xavier Dumusque, Aldo S. Bonomo, Raphaelle D. Haywood, Luca Malavolta, Damien Segransan, Lars A. Buchhave, Andrew Collier Cameron, David W. Latham, Emilio Molinari, Francesco Pepe, Stephane Udry, David Charbonneau, Rosario Cosentino, Courtney D. Dressing, Pedro Figueira, Aldo F. M. Fiorenzano, Sara Gettel, Avet Harutyunyan, Keith Horne, Mercedes Lopez-Morales, Christophe Lovis, Michel Mayor, Giusi Micela, Fatemeh Motalebi, Valerio Nascimbeni, David F. Phillips, Giampaolo Piotto, Don Pollacco, Didier Queloz, Ken Rice, Dimitar Sasselov, Alessandro Sozzetti, Andrew Szentgyorgyi, Chris Watson, (Submitted on 30 May 2014)
    4. 1 2 3 , Weiss L. M., et al., 2016, Astrophys. J., 819, 83
    5. The orbital phases and secondary transit of Kepler-10b - A physical interpretation based on the Lava-ocean planet model  : Daniel Rouan, Hans J. Deeg, Olivier Demangeon, Benjamin Samuel, Céline Cavarroc, Bruce Fegley, Alain Léger
    6. "BBC News". BBC. 2010-01-10. Retrieved 2010-11-01.
    7. "Kepler-10b". NASA. 2011-01-10. Archived from the original on 2011-07-21. Retrieved 2010-01-15.
    8. "Mission overview". Kepler and K2. NASA. 13 April 2015. Retrieved 3 December 2017.
    9. 1 2 Dennis Overbye (10 January 2011). "Kepler-10b, a Lethally Hot Exoplanet, Is Discovered". New York Times . Retrieved 6 March 2011.
    10. Seager, S.; Mallen‐ornelas, G. (2003). "A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve". The Astrophysical Journal . 585 (2): 1038–1055. arXiv: astro-ph/0206228 . Bibcode:2003ApJ...585.1038S. doi:10.1086/346105. S2CID   14274640.
    11. 1 2 "NASA'S Kepler Mission Discovers Its First Rocky Planet". NASA. 2011-01-10. Retrieved 2011-01-10.
    12. 1 2 3 Grossman, Lisa (2010-01-10). "Kepler Finds First Definitively Rocky Exoplanet". Wired. Archived from the original on 2014-06-02. Retrieved 2011-01-15.
    13. The orbital phases and secondary transit of Kepler-10b - A physical interpretation based on the Lava-ocean planet model  : Daniel Rouan, Hans J. Deeg, Olivier Demangeon, Benjamin Samuel, Céline Cavarroc, Bruce Fegley, Alain Léger
    14. Dan Vergano (10 January 2011). "Kepler's rocky exoplanet reaction round-up". Science Fair. USA Today . Retrieved 11 March 2011.
    15. Ron Cowen (12 February 2011). "New Planet Small But Tough". ScienceNews. Retrieved 11 March 2011.
    16. "Kepler Discoveries: Kepler-10b". Kepler @ NASA. 2011-01-10. Archived from the original on 2011-07-21. Retrieved 2011-01-12.
    17. Modirrousta-Galian, D., Ito, Y. and Micela, G., (2020). Exploring super-Earth surfaces: Albedo of near-airless magma ocean planets and topography. Icarus, p.114175.

    Commons-logo.svg Media related to Kepler-10 b at Wikimedia Commons

    Preceded by Most dense planet
    2011
    Succeeded by
    Preceded by
    Most dense exoplanet
    2011
    Succeeded by