3C 371

Last updated
3C 371
3C-371-jet-O5GV07NEQ.gif
Hubble Legacy Archive Near-UV image of the jet coming out of 3C 371
Observation data (Epoch J2000)
Constellation Draco
Right ascension 18h 06m 50.681s [1]
Declination +69° 49 28.11 [1]
Redshift 0.051 [1] [2]
Distance 730 million light-years
224 Mpc [3]
Type BL Lac [1] [2] [3]
FRI RG [4]
Apparent magnitude  (V)14.4 [2] ±1.5 [5]
Other designations
UGC 11130, PGC 61417, 2E 4023, 7C 180717.90+694858.00, QSO B1807+698 [1]
See also: Quasar, List of quasars

3C 371 is a BL Lac object [1] [2] located in the constellation Draco. With a redshift of 0.051, [2] this active galaxy is about 730 million light-years away. [3]

3C 371 is a well known object, first associated with the BL Lac class by Miller in 1975, [4] and is among the nearest and brightest BL Lacs. [4] Optical jet emission from 3C 371 was first detected in ground-based images by Nilsson et al. in 1997, and confirmed with HST (Scarpa et al.) in 1999. [4] The implied viewing angle may be less than 18 degrees. [4] But no superluminal motion has been detected, despite frequent monitoring by the Very Long Baseline Array (VLBA). [4]

There are photos of this object dating back to 1895, and they suggest that this objects magnitude can vary by ±1.5. [5]

Related Research Articles

<span class="mw-page-title-main">Quasar</span> Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN). It is pronounced KWAY-zar, and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from an AGN is powered by a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up because of friction and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Usually, quasars are categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a much-higher-than-normal luminosity over at least some portion of the electromagnetic spectrum with characteristics indicating that the luminosity is not produced by stars. Such excess non-stellar emission has been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an "active galaxy". The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

<span class="mw-page-title-main">3C 273</span> Brightest quasar from Earth located in the constellation Virgo

3C 273 is a quasar located at the center of a giant elliptical galaxy in the constellation of Virgo. It was the first quasar ever to be identified and is the visually brightest quasar in the sky as seen from Earth. The derived distance to this object is 749 megaparsecs (2.4 billion light-years). The mass of its central supermassive black hole is (886±187)×106 M.

<span class="mw-page-title-main">Seyfert galaxy</span> Class of active galaxies with very bright nuclei

Seyfert galaxies are one of the two largest groups of active galaxies, along with quasars. They have quasar-like nuclei with very high surface brightnesses whose spectra reveal strong, high-ionisation emission lines, but unlike quasars, their host galaxies are clearly detectable.

<span class="mw-page-title-main">Radio galaxy</span> Type of active galaxy that is very luminous at radio wavelengths

A radio galaxy is a galaxy with giant regions of radio emission extending well beyond its visible structure. These energetic radio lobes are powered by jets from its active galactic nucleus. They have luminosities up to 1039 W at radio wavelengths between 10 MHz and 100 GHz. The radio emission is due to the synchrotron process. The observed structure in radio emission is determined by the interaction between twin jets and the external medium, modified by the effects of relativistic beaming. The host galaxies are almost exclusively large elliptical galaxies. Radio-loud active galaxies can be detected at large distances, making them valuable tools for observational cosmology. Recently, much work has been done on the effects of these objects on the intergalactic medium, particularly in galaxy groups and clusters.

<span class="mw-page-title-main">Messier 87</span> Elliptical galaxy in the Virgo Galaxy Cluster

Messier 87 is a supergiant elliptical galaxy in the constellation Virgo that contains several trillion stars. One of the largest and most massive galaxies in the local universe, it has a large population of globular clusters — about 15,000 compared with the 150–200 orbiting the Milky Way — and a jet of energetic plasma that originates at the core and extends at least 1,500 parsecs, traveling at a relativistic speed. It is one of the brightest radio sources in the sky and a popular target for both amateur and professional astronomers.

<span class="mw-page-title-main">Blazar</span> Very compact quasi-stellar radio source

A blazar is an active galactic nucleus (AGN) with a relativistic jet directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales. Some blazar jets exhibit apparent superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.

<span class="mw-page-title-main">BL Lacertae object</span> Type of active galactic nucleus

A BL Lacertae object or BL Lac object is a type of active galactic nucleus (AGN) or a galaxy with such an AGN, named after its prototype, BL Lacertae. In contrast to other types of active galactic nuclei, BL Lacs are characterized by rapid and large-amplitude flux variability and significant optical polarization. Because of these properties, the prototype of the class was originally thought to be a variable star. When compared to the more luminous active nuclei (quasars) with strong emission lines, BL Lac objects have spectra dominated by a relatively featureless non-thermal emission continuum over the entire electromagnetic range. This lack of spectral lines historically hindered identification of the nature and distance of such objects.

<span class="mw-page-title-main">Centaurus A</span> Radio galaxy in the constellation Centaurus

Centaurus A is a galaxy in the constellation of Centaurus. It was discovered in 1826 by Scottish astronomer James Dunlop from his home in Parramatta, in New South Wales, Australia. There is considerable debate in the literature regarding the galaxy's fundamental properties such as its Hubble type and distance. NGC 5128 is one of the closest radio galaxies to Earth, so its active galactic nucleus has been extensively studied by professional astronomers. The galaxy is also the fifth-brightest in the sky, making it an ideal amateur astronomy target. It is only visible from the southern hemisphere and low northern latitudes.

<span class="mw-page-title-main">Messier 49</span> Elliptical galaxy in the constellation Virgo

Messier 49 is a giant elliptical galaxy about 56 million light-years away in the equatorial constellation of Virgo. This galaxy was discovered by astronomer Charles Messier in 1777.

<span class="mw-page-title-main">BL Lacertae</span> Active galaxy in the constellation Lacerta

BL Lacertae or BL Lac is a highly variable, extragalactic active galactic nucleus. It was first discovered by Cuno Hoffmeister in 1929, but was originally thought to be an irregular variable star in the Milky Way galaxy and so was given a variable star designation. In 1968, the "star" was identified by John Schmitt at the David Dunlap Observatory as a bright, variable radio source. A faint trace of a host galaxy was also found. In 1974, Oke and Gunn measured the redshift of BL Lacertae as z = 0.07, corresponding to a recession velocity of 21,000 km/s with respect to the Milky Way. The redshift figure implies that the object lies at a distance of 900 million light years.

<span class="mw-page-title-main">NGC 4725</span> Intermediate barred spiral galaxy in the constellation Coma Berenices

NGC 4725 is an intermediate barred spiral galaxy with a prominent ring structure, located in the northern constellation of Coma Berenices near the north galactic pole. It was discovered by German-born astronomer William Herschel on April 6, 1785. The galaxy lies at a distance of approximately 40 megalight-years from the Milky Way.

<span class="mw-page-title-main">NGC 5548</span> Type I Seyfert galaxy in the constellation Boötes

NGC 5548 is a Type I Seyfert galaxy with a bright, active nucleus. This activity is caused by matter flowing onto a 65 million solar mass (M) supermassive black hole at the core. Morphologically, this is an unbarred lenticular galaxy with tightly-wound spiral arms, while shell and tidal tail features suggest that it has undergone a cosmologically-recent merger or interaction event. NGC 5548 is approximately 245 million light years away and appears in the constellation Boötes. The apparent visual magnitude of NGC 5548 is approximately 13.3 in the V band.

<span class="mw-page-title-main">OJ 287</span> Bl Lac object in the constellation Cancer

OJ 287 is a BL Lac object 3.5 billion light-years from Earth that has produced quasi-periodic optical outbursts going back approximately 120 years, as first apparent on photographic plates from 1891. Seen on photographic plates since at least 1887, it was first detected at radio wavelengths during the course of the Ohio Sky Survey. It is a supermassive black hole binary. The intrinsic brightness of the flashes corresponds to over a trillion times the Sun's luminosity, greater than the entire Milky Way galaxy's light output.

<span class="mw-page-title-main">NGC 4151</span> Intermediate spiral seyfert galaxy in the constellation Canes Venatici

NGC 4151 is an intermediate spiral Seyfert galaxy with weak inner ring structure located 15.8 megaparsecs from Earth in the constellation Canes Venatici. The galaxy was first mentioned by William Herschel on March 17, 1787; it was one of the six Seyfert galaxies described in the paper which defined the term. It is one of the nearest galaxies to Earth to contain an actively growing supermassive black hole. The black hole would have a mass on the order of 2.5 million to 30 million solar masses. It was speculated that the nucleus may host a binary black hole, with about 40 million and about 10 million solar masses respectively, orbiting with a 15.8-year period. This is, however, still a matter of active debate.

<span class="mw-page-title-main">3C 66B</span> Elliptical radio galaxy in the constellation Andromeda

3C 66B is an elliptical Fanaroff and Riley class 1 radio galaxy located in the constellation Andromeda. With an estimated redshift of 0.021258, the galaxy is about 300 million light-years away.

TXS 0506+056 is a very high energy blazar – a quasar with a relativistic jet pointing directly towards Earth – of BL Lac-type. With a redshift of 0.3365 ± 0.0010, it is about 1.75 gigaparsecs from Earth. Its approximate location on the sky is off the left shoulder of the constellation Orion. Discovered as a radio source in 1983, the blazar has since been observed across the entire electromagnetic spectrum.

<span class="mw-page-title-main">NGC 708</span> Elliptical galaxy in the constellation Andromeda

NGC 708 is an elliptical galaxy located 240 million light-years away in the constellation Andromeda and was discovered by astronomer William Herschel on September 21, 1786. It is classified as a cD galaxy and is the brightest member of Abell 262. NGC 708 is a weak FR I radio galaxy and is also classified as a type 2 Seyfert galaxy.

<span class="mw-page-title-main">NGC 7469</span> Intermediate spiral galaxy located in the constellation Pegasus

NGC 7469 is an intermediate spiral galaxy in the constellation of Pegasus. NGC 7469 is located about 200 million light-years away from Earth, which means, given its apparent dimensions, that NGC 7469 is approximately 90,000 light-years across. It was discovered by William Herschel on November 12, 1784.

<span class="mw-page-title-main">AP Librae</span> Active galactic nucleus in the constellation Libra

AP Librae is a BL Lacertae object located at a distance of 700 million light years in the southern constellation of Libra. In the visual band it is one of the most active blazars known. AP Lib is surrounded by an extended source with a spectrum characteristic of a red-shifted giant elliptical galaxy. The derived visual magnitude of this region is 15.0, and it follows a radially decreasing brightness that is characteristic of an elliptical. Seven fainter galaxies are visible within an angular radius of 9′, suggesting it is the brightest member of a galactic cluster.

References

  1. 1 2 3 4 5 6 "3C 371". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2010-04-11.
  2. 1 2 3 4 5 "NASA/IPAC Extragalactic Database". Results for 3C 371. Retrieved 2010-04-11.
  3. 1 2 3 "3C 371". XJET: X-Ray Emission from Extragalactic Radio Jets. 2008-01-11. Retrieved 2010-04-11.
  4. 1 2 3 4 5 6 Perlin, Eric S.; Padgett; Georganopoulos; Sparks; Biretta; et al. (2006). "Optical Polarimetry of the Jets of Nearby Radio Galaxies. I. The Data". The Astrophysical Journal. 651 (2): 735–748. arXiv: astro-ph/0606119 . Bibcode:2006ApJ...651..735P. doi:10.1086/506587. S2CID   53073859.
  5. 1 2 Usher, Peter D.; Manley, Oscar P. (1968). "The Unusual Long-Term Behavior of 3c 371". Astrophysical Journal. 151: L79–L82. Bibcode:1968ApJ...151L..79U. doi:10.1086/180147.