Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Draco |
Right ascension | 19h 04m 58.4221s [1] |
Declination | +50° 02′ 25.272″ [1] |
Apparent magnitude (V) | 13.4 [2] |
Astrometry | |
Proper motion (μ) | RA: 3.070(11) mas/yr [1] Dec.: 3.211(11) mas/yr [1] |
Parallax (π) | 1.1351 ± 0.0093 mas [1] |
Distance | 2,870 ± 20 ly (881 ± 7 pc) |
Characteristics | |
Spectral type | G0 [2] |
Details [2] | |
Mass | 1.166±0.054 M☉ |
Radius | 1.483±0.029 R☉ |
Temperature | 5947±100 K |
Metallicity [Fe/H] | 0.07 (± 0.04) dex |
Rotational velocity (v sin i) | 2.7±0.5 [3] km/s |
Age | 4.0±0.4 Gyr |
Other designations | |
Database references | |
SIMBAD | data |
KIC | data |
Kepler-12 is an early G-type to late F-type star with a transiting planet Kepler-12b in a 4-day orbit. The star lies within the constellation Draco and is located approximately 881 parsecs (2,870 light-years ) away from Earth.
Kepler-12, known also as KIC 11804465 in the Kepler Input Catalog, is an early G-type to late F-type star, about 4 billion years old. This corresponds strongly with a sunlike dwarf star nearing the end of the main sequence, which is about to become a red giant. [4] Kepler-12 is located approximately 881 parsecs (2,870 light-years ) away from Earth. [1] The star also has an apparent magnitude of 13.438, which means that it cannot be seen from Earth with the unaided eye. [2]
The star is slightly more massive, slightly more iron-rich and slightly hotter than the Sun. However, Kepler-12 is larger, with a radius of 1.483 times the Sun's radius. [2]
The only currently known planet, b, is a hot Jupiter with a radius 1.7 times that of Jupiter but less than half the mass. [5] It exhibits a pronounced radius anomaly, being significantly larger than predicted by standard models of planetary evolution for its level of stellar irradiation and mass. This suggests additional mechanisms contribute to its inflated radius, such as lower heavy-element content or internal heat sources. [4]
Companion (in order from star) | Mass | Semimajor axis (AU) | Orbital period (days) | Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | 0.432+0.053 −0.051 MJ | 0.0553+0.0010 −0.0012 | 4.4379637±0.0000002 | 0 | 88.796+0.088 −0.074 ° | 1.754+0.031 −0.036 RJ |
HAT-P-6 also named Sterrennacht is a star in the constellation Andromeda, located approximately 895 light years or 274 parsecs away from the Earth. It is an F-type star, implying that it is hotter and more massive than the Sun. The apparent magnitude of the star is +10.54, which means that it can only be visible through the telescope. The absolute magnitude of +3.36 is brighter than the Sun's +4.83, meaning that the star itself is brighter than the Sun. A search for a binary companion star using adaptive optics at the MMT Observatory turned out negative.
Kepler-4 is a sunlike star located about 1626 light-years away in the constellation Draco. It is in the field of view of the Kepler Mission, a NASA operation purposed with finding Earth-like planets. Kepler-4b, a Neptune-sized planet that orbits extremely close to its star, was discovered in its orbit and made public by the Kepler team on January 4, 2010. Kepler-4b was the first discovery by the Kepler satellite, and its confirmation helped to demonstrate the spacecraft's effectiveness.
Kepler-5 is a star located in the constellation Cygnus in the field of view of the Kepler Mission, a NASA project aimed at detecting planets in transit of, or passing in front of, their host stars as seen from Earth. One closely-orbiting, Jupiter-like planet, named Kepler-5b, has been detected around Kepler-5. Kepler-5's planet was one of the first five planets to be discovered by the Kepler spacecraft; its discovery was announced on January 4, 2010 at the 215th meeting of the American Astronomical Society after being verified by a variety of observatories. Kepler-5 is larger and more massive than the Sun, but has a similar metallicity, a major factor in planet formation.
Kepler-10, formerly known as KOI-72, is a Sun-like star in the constellation of Draco that lies 607 light-years from Earth. Kepler-10 was targeted by NASA's Kepler space telescope, as it was seen as the first star identified by the Kepler mission that could be a possible host to a small, transiting exoplanet. The star is slightly less massive, slightly larger, and slightly cooler than the Sun; at an estimated 11.9 billion years in age, Kepler-10 is 2.3 times the age of the Sun.
HAT-P-32b is a planet orbiting the G-type or F-type star HAT-P-32, which is approximately 950 light years away from Earth. HAT-P-32b was first recognized as a possible planet by the planet-searching HATNet Project in 2004, although difficulties in measuring its radial velocity prevented astronomers from verifying the planet until after three years of observation. The Blendanal program helped to rule out most of the alternatives that could explain what HAT-P-32b was, leading astronomers to determine that HAT-P-32b was most likely a planet. The discovery of HAT-P-32b and of HAT-P-33b was submitted to a journal on 6 June 2011.
Kepler-39b, is a confirmed extrasolar object discovered orbiting the F-type star Kepler-39. It is eighteen times more massive than Jupiter, and is about five fourths its size. The planet orbits its host star at about 15% of the average distance between the Earth and Sun. Kepler-39b's host star was investigated by European astronomers along with three other stars, including the host star of Kepler-40b, using equipment at the Haute-Provence Observatory in France. Collection and analysis of data in late 2010 led to the confirmation of Kepler-39b. The discovery paper was published in a journal on June 6, 2011.
Kepler-41 or KOI-196 is a star in the constellation Cygnus. It is a G-type main-sequence star, like the Sun, and it is located about 3,510 light-years away. It is fairly similar to the Sun, with 115% of its mass, a radius of 129% times that of the Sun, and a surface temperature of 5,750 K. Search for stellar companions to Kepler-41 in 2013-2014 has yielded inconclusive results, compatible with Kepler-41 being the single star.
Kepler-12b is a hot Jupiter that orbits G-type star Kepler-12 some 900 parsecs (2,900 ly) away. The planet has an anomalously large radius that could not be explained by standard models at the time of its discovery, almost 1.7 times Jupiter's size while being 0.4 times Jupiter's mass. The planet was detected by the Kepler spacecraft, a NASA project searching for planets that transit their host stars. The discovery paper was published on September 5, 2011.
Kepler-22 is a Sun-like star in the northern constellation of Cygnus, the swan, that is orbited by at least 1 planet found to be unequivocally within the star's habitable zone. It is located at the celestial coordinates: Right Ascension 19h 16m 52.2s, Declination +47° 53′ 3.9″. With an apparent visual magnitude of 11.7, this star is too faint to be seen with the naked eye. It can be viewed with a telescope having an aperture of at least 4 in (10 cm). The estimated distance to Kepler-22 is 644 light-years.
Kepler-42, formerly known as KOI-961, is a red dwarf located in the constellation Cygnus and approximately 131 light years from the Sun. It has three known extrasolar planets, all of which are smaller than Earth in radius and orbit very close to the star.
Kepler-33 is a star about 4,000 light-years in the constellation of Cygnus, with a system of five known planets. Having just begun to evolve off from the main sequence, its radius and mass are difficult to ascertain, although data available in 2020 shows its best-fit mass of 1.3M☉ and radius of 1.6R☉ are compatible with a model of a subgiant star.
Kepler-32 is an M-type main sequence star located about 1053 light years from Earth, in the constellation of Cygnus. Discovered in January 2012 by the Kepler spacecraft, it shows a 0.58 ± 0.05 solar mass (M☉), a 0.53 ± 0.04 solar radius (R☉), and temperature of 3900.0 K, making it half the mass and radius of the Sun, two-thirds its temperature and 5% its luminosity.
Kepler-88 is a G-type star 1,230 light-years away in the constellation of Lyra, with three confirmed exoplanets. SIMBAD lists a subgiant spectral type of G8IV, while other sources give it a main sequence spectral type of G6V. The latter is more consistent with its properties.
Kepler-91b is a giant planet orbiting Kepler-91, a star slightly more massive than the Sun. Kepler-91 has left the main sequence and is now a red giant branch star.
Kepler-78 is a 12th magnitude star 407 light-years away in the constellation Cygnus. Initially classified as an eclipsing binary with orbital period 0.710015 days, it was later re-classified as a single star with significant interaction between star magnetosphere and close-in planet. The radius of the star is of about 74% of the Sun, and the effective temperature is about 5100 K.
K2-3, also known as EPIC 201367065, is a red dwarf star with three known planets. It is on the borderline of being a late orange dwarf/K-type star, but because of its temperature, it is classified as a red dwarf.
Kepler-1625b is a super-Jupiter exoplanet orbiting the Sun-like star Kepler-1625 about 2,500 parsecs away in the constellation of Cygnus. The large gas giant is approximately the same radius as Jupiter, and orbits its star every 287.4 days. In 2017, hints of a Neptune-sized exomoon in orbit of the planet was found using photometric observations collected by the Kepler Mission. Further evidence for a Neptunian moon was found the following year using the Hubble Space Telescope, where two independent lines of evidence constrained the mass and radius to be Neptune-like. The mass-signature has been independently recovered by two other teams. However, the radius-signature was independently recovered by one of the teams but not the other. The original discovery team later showed that this latter study appears affected by systematic error sources that may influence their findings.
Kepler-13 or KOI-13 is a stellar triple star system consisting of Kepler-13A, around which an orbiting hot Jupiter exoplanet was discovered with the Kepler space telescope in 2011, and Kepler-13B a common proper motion companion star which has an additional star orbiting it.
Kepler-93b (KOI-69b) is a hot, dense transiting Super-Earth exoplanet located approximately 313 light-years away in the constellation of Lyra, orbiting the G-type star Kepler-93. Its discovery was announced in February 2014 by American astronomer Geoffrey Marcy and his team. In July 2014, its radius was determined with a mere 1.3% margin of error, the most precise measurement ever made for an exoplanet's radius at the time.
Kepler-167 is a K-type main-sequence star located about 1,119 light-years (343 pc) away from the Solar System in the constellation of Cygnus. The star has about 78% the mass and 75% the radius of the Sun, and a temperature of 4,884 K. It hosts a system of four known exoplanets. There is also a companion red dwarf star at a separation of about 700 AU, with an estimated orbital period of over 15,000 years.