Kepler-296f

Last updated

Kepler-296f
Discovery
Discovery site Kepler Space Observatory
Discovery date2014
Transit
Orbital characteristics
0.26300 AU (39,344,000 km)
63.33587900 d
Inclination 89.950
Star Kepler-296
Physical characteristics
Mean radius
1.790 REarth
Temperature 194 K (−79 °C; −110 °F)

    Kepler-296f [1] [2] [3] (also known by its Kepler Object of Interest designation KOI-1422.04) is a confirmed super-Earth exoplanet orbiting within the habitable zone of Kepler-296. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the discovery of the exoplanet on 26 February 2014. [1]

    Contents

    Confirmed exoplanet

    Kepler 296f is a super-Earth with a radius 1.79 times that of Earth. The planet orbits Kepler-296 once every 63.3 days.

    Habitability

    The planet is located within the habitable zone of Kepler-296, a region where liquid water could exist on the surface of the planet.

    Notable ExoplanetsKepler Space Telescope
    KeplerExoplanets-NearEarthSize-HabitableZone-20150106.png
    Confirmed small exoplanets in habitable zones.
    (Kepler-62e, Kepler-62f, Kepler-186f, Kepler-296e, Kepler-296f, Kepler-438b, Kepler-440b, Kepler-442b)
    (Kepler Space Telescope; 6 January 2015). [4]

    See also

    Related Research Articles

    Kepler-80, also known as KOI-500, is a red dwarf star of the spectral type M0V. This stellar classification places Kepler-80 among the very common, cool, class M stars that are still within their main evolutionary stage, known as the main sequence. Kepler-80, like other red dwarf stars, is smaller than the Sun, and it has both radius, mass, temperatures, and luminosity lower than that of our own star. Kepler-80 is found approximately 1,218 light years from the Solar System, in the stellar constellation Cygnus, also known as the Swan.

    Kepler-138, also known as KOI-314, is a red dwarf located in the constellation Lyra, 218 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars.

    <span class="mw-page-title-main">Kepler-186</span> Star in the constellation Cygnus

    Kepler-186 is a main-sequence M1-type dwarf star, located 178.5 parsecs away in the constellation of Cygnus. The star is slightly cooler than the sun, with roughly half its metallicity. It is known to have five planets, including the first Earth-sized world discovered in the habitable zone: Kepler-186f. The star hosts four other planets discovered so far, though they all orbit interior to the habitable zone.

    <span class="mw-page-title-main">Kepler-186f</span> Goldilocks terrestrial exoplanet orbiting Kepler-186

    Kepler-186f is an exoplanet orbiting the red dwarf Kepler-186, about 580 light-years from Earth.

    Kepler-298d is an exoplanet orbiting Kepler-298, 473.69 parsecs away. Kepler-298d was discovered in 2014, it orbits its star in the Habitable zone. Kepler-298d was thought to be an Earth-like planet, further research shows that its atmosphere is +2.11 on the HZA scale, this means the planet may be an ocean planet with a thick gas atmosphere like a dwarf-giant.

    <span class="mw-page-title-main">Kepler-438b</span> Super-Earth orbiting Kepler-438

    Kepler-438b is a confirmed near-Earth-sized exoplanet. It is likely rocky. It orbits on the inner edge of the habitable zone of a red dwarf, Kepler-438, about 472.9 light-years from Earth in the constellation Lyra. It receives 1.4 times our solar flux. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the confirmation of the exoplanet on 6 January 2015.

    Kepler-296e is a confirmed Earth-sized exoplanet orbiting within the habitable zone of Kepler-296. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the discovery of the exoplanet on 26 February 2014.

    Kepler-438 is a red dwarf in the constellation Lyra, about 640 light years from Earth. It is notable for its planetary system, which includes Kepler-438b, a possibly Earth-size planet within Kepler-438's habitable zone.

    Kepler-296 is a binary star system in the constellation Draco. The primary star appears to be a late K-type main-sequence star, while the secondary is a red dwarf.

    Kepler-182 is a star in the constellation of Cygnus. In the night sky, it is located at right ascension 19h 21m 39.2s and declination +38° 20′ 38″. The star is notable for having two planets in the circumstellar habitable zone.

    Kepler-24d is a transiting exoplanet orbiting the star Kepler-24, located in the constellation Lyra. It was discovered by the Kepler telescope in February 2014. It orbits its parent star at only 0.051 astronomical units away, and at its distance it completes an orbit once every 4.244384 days.

    Kepler-24e is a transiting exoplanet orbiting the star Kepler-24, located in the constellation Lyra. It was discovered by the Kepler telescope in February 2014. It orbits its parent star at only 0.138 astronomical units away, and at its distance it completes an orbit once every 19 days.

    Kepler-174d is an exoplanet orbiting the K-type star Kepler-174, located in the constellation Lyra. It was discovered by the Kepler telescope in February 2014. It orbits its parent star at 0.677 astronomical units away, and at its distance it completes an orbit once every 247 days.

    Kepler-26e is an exoplanet orbiting the star Kepler-26, located in the constellation Lyra. It was discovered by the Kepler telescope in February 2014. It orbits its parent star at only 0.220 astronomical units and completes an orbit once every 46.8 days. It is potentially habitable.

    Kepler-186e is a confirmed exoplanet orbiting the red dwarf star Kepler-186, approximately 582 light years away from Earth in the constellation of Cygnus. It is near the optimistic habitable zone but probably not in it, possibly making it have a runaway greenhouse effect, like Venus. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Four additional planets orbiting the star were also discovered.

    Kepler-395c is a potentially habitable exoplanet 616 light-years away in the constellation of Cygnus.

    Kepler-160 is a main-sequence star approximately the width of our Galactic arm away in the constellation Lyra, first studied in detail by the Kepler Mission, a NASA-led operation tasked with discovering terrestrial planets. The star, which is very similar to the Sun in mass and radius, has three confirmed planets and one unconfirmed planet orbiting it.

    Kepler-167 is a K-type main-sequence star located about 1,119 light-years (343 pc) away from the Solar System in the constellation of Cygnus. The star has about 78% the mass and 75% the radius of the Sun, and a temperature of 4,884 K. It hosts a system of four known exoplanets. There is also a companion red dwarf star at a separation of about 700 AU, with an estimated orbital period of over 15,000 years.

    References

    1. 1 2 Staff (26 February 2014). "715 Newly Verified Planets More Than Triples the Number of Confirmed Kepler Planets". NASA . Archived from the original on 4 March 2014. Retrieved 8 January 2015.
    2. Lissauer, Jack J.; et al. (25 February 2014). "Validation of Kepler's Multiple Planet Candidates. II: Refined Statistical Framework and Descriptions of Systems of Special Interest". The Astrophysical Journal. 784 (1): 44. arXiv: 1402.6352 . Bibcode:2014ApJ...784...44L. doi:10.1088/0004-637X/784/1/44. S2CID   119108651.
    3. Rowe, Jason F. (2014). "Validation of Kepler's Multiple Planet Candidates. III: Light Curve Analysis & Announcement of Hundreds of New Multi-planet Systems". The Astrophysical Journal. 784 (1): 45. arXiv: 1402.6534 . Bibcode:2014ApJ...784...45R. doi:10.1088/0004-637X/784/1/45. S2CID   119118620.
    4. Clavin, Whitney; Chou, Felicia; Johnson, Michele (6 January 2015). "NASA's Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones". NASA . Retrieved 6 January 2015.