Discovery [2] | |
---|---|
Discovery date | January 4, 2010 [3] |
Transit (Kepler Mission) [2] | |
Orbital characteristics | |
0.06224 AU | |
Eccentricity | 0 [2] |
4.885525±0.000040 [2] d | |
Inclination | 86.5 [4] |
Star | Kepler-7 |
Physical characteristics | |
1.478+0.050 −0.051 [2] RJ | |
Mass | 0.433+0.040 −0.041 [2] MJ |
Mean density | 0.166+0.019 −0.020 g/cm3[ citation needed ] |
Albedo | 0.32±0.03 [5] [6] |
Temperature | 1,540 K (1,270 °C; 2,310 °F) [2] |
Kepler-7b is one of the first five exoplanets to be confirmed by NASA's Kepler spacecraft, and was confirmed in the first 33.5 days of Kepler's science operations. [2] It orbits a star slightly hotter and significantly larger than the Sun that is expected to soon reach the end of the main sequence. [2] Kepler-7b is a hot Jupiter that is about half the mass of Jupiter, but is nearly 1.5 times its size; at the time of its discovery, Kepler-7b was the second most diffuse planet known, surpassed only by WASP-17b. [2] It orbits its host star every five days at a distance of approximately 0,06 AU (9.000.000 km or 5.592.340 mi). Kepler-7b was announced at a meeting of the American Astronomical Society on January 4, 2010. It is the first extrasolar planet to have a crude map of cloud coverage. [7] [8] [9]
Kepler-7b is a hot Jupiter, a Jupiter-like exoplanet orbiting close to its star. Its equilibrium temperature, due to its proximity to its star, is hot and is measured at nearly 1540 K. However, of the first five planets discovered by Kepler, it is the second coolest, being surpassed only by Kepler-6b. [4] This is over twelve times hotter than Jupiter. [4] Kepler-7b has a mass of only 0.433 that of Jupiter but due to proximity to its star the planet has expanded to a radius of 1.478 that of Jupiter. Because of this its mean density is only 0.166 g/cm3, about the same as expanded polystyrene. Only WASP-17b (0.49MJ; 1.66RJ) [10] was known to have a lower density at the time of Kepler-7b's discovery. [2] Such low densities are not predicted by current standard theories of planet formation. [11]
Kepler-7b orbits its host star every 4.8855 days at a distance of 0.06224 AU , making it the furthest-orbiting planet of the first five discovered by Kepler. Mercury, in contrast, orbits at a distance of 0.387 AU every 87.97 days. [12] In addition Kepler-7b has an observed orbital inclination of 86.5º, which means that its orbit is almost edge-on as seen from Earth. [4]
Astronomers using data from NASA's Kepler and Spitzer space telescopes have created a cloud map of the planet. It is the first cloud map to be created beyond the Solar System. Kepler's visible-light observations of Kepler-7b's Moon-like phases led to a rough map of the planet that showed a bright spot on its western hemisphere. [13] But these data were not enough on their own to decipher whether the bright spot was coming from clouds or heat. The Spitzer Space Telescope played a crucial role in answering this question. [14] Jonathan Fortney, professor of astronomy and astrophysics at UC Santa Cruz, said: "These clouds may well be composed of rock and iron, since the planet is over 1,000 degrees Fahrenheit (500 degrees Celsius)." Brice-Olivier Demory of the Massachusetts Institute of Technology noted that the oceans and continents cannot be detected, but a clear reflective signature has been detected which is interpreted as cloud. Thomas Barclay, Kepler scientist at NASA's Ames Research Center, said: "Unlike those on Earth, the cloud patterns on this planet do not seem to change much over time—it has a remarkably stable climate." [1]
Kepler-7 is the largest host star of the first five planets detected by Kepler, and is situated in the Lyra constellation. The star has a radius 184% that of the Sun. Kepler-7 also has 135% the Sun's mass, and thus is larger and more massive (though less dense) than the Sun. It is slightly hotter than the Sun, as Kepler-7 has an effective temperature of 5933 K. [15] The star is near the end of its life on the main sequence. [2] The star's metallicity is [Fe/H] = 0.11, which means that Kepler-7 has 128% the amount of iron than is detected in the Sun. [15]
In 2009, NASA's Kepler space telescope was completing the last of tests on its photometer, the instrument it uses to detect transit events, in which a planet crosses in front of and dims its host star for a brief and roughly regular period of time. In this last test, Kepler observed 50000 stars in the Kepler Input Catalog, including Kepler-7; the preliminary light curves were sent to the Kepler science team for analysis, who chose obvious planetary companions from the bunch for follow-up at observatories. Kepler-7 was not one of these original candidates. [2] After a resting period of 1.3 days, Kepler began a nonstop 33.5-day period in which it observed 150000 targets uninterrupted until June 15, 2009, when the collected data was downloaded and tested for false positives. Kepler-7's candidate was not found to be one of these false positives, such as an eclipsing binary star that may generate a light curve that mimics that of transiting planetary companions.
Kepler-7 was then observed using Doppler spectroscopy using the Fibre-fed Echelle Spectrograph at the Canary Islands' Nordic Optical Telescope for ten nights in October 2009, taken regards to the star HD 182488 to compensate for possible telescope error. Speckle imaging of the star was taken at WIYN Observatory in Arizona to check for close companions; when none were found, the High Resolution Echelle Spectrometer instrument at the W.M. Keck Observatory on Hawaii, the Harlan J. Smith Telescope at the McDonald Observatory in Texas, the PRISM camera at the Lowell Observatory, and the Faulkes Telescope North at the Haleakala Observatory on Maui were also used to analyze Doppler spectroscopy of the planetary candidate.
The radial velocity observations confirmed that a planetary body was responsible for the dips observed in Kepler-7's light curve, thus confirming it as a planet. [2] Kepler's first discoveries, including the planets Kepler-4b, Kepler-5b, Kepler-6b, Kepler-7b, and Kepler-8b, were first announced on January 4, 2010, at the 215th meeting of the American Astronomical Society in Washington, D.C. [3] In May 2011, the planet was detected by brightness variations of the star cause by reflected starlight from the planet. It was found that Kepler-7b has a relatively high geometric albedo of 0.3. [16]
An exoplanet is a planet outside the Solar System. The study of exoplanets begun in 1992 with the first confirmation of Poltergeist and Phobetor exoplanets orbiting Lich pulsar. By 2024, there are thousands of exoplanets discovered, with the exact number depending on the definition of an exoplanet.
The Kepler space telescope is a defunct space telescope launched by NASA in 2009 to discover Earth-sized planets orbiting other stars. Named after astronomer Johannes Kepler, the spacecraft was launched into an Earth-trailing heliocentric orbit. The principal investigator was William J. Borucki. After nine and a half years of operation, the telescope's reaction control system fuel was depleted, and NASA announced its retirement on October 30, 2018.
The Trans-Atlantic Exoplanet Survey, or TrES, used three 4-inch (10 cm) telescopes located at Lowell Observatory, Palomar Observatory, and Teide Observatory to locate exoplanets. It was made using the network of small, relatively inexpensive telescopes designed to look specifically for planets orbiting bright stars using the transit method. The array used 4-inch Schmidt telescopes having CCD cameras and automated search routines. The survey was created by David Charbonneau of the Center for Astrophysics, Timothy Brown of the National Center for Atmospheric Research, and Edward Dunham of Lowell Observatory.
TrES-2b is an extrasolar planet orbiting the star GSC 03549-02811 located 750 light years away from the Solar System. The planet was identified in 2011 as the darkest known exoplanet, reflecting less than 1% of any light that hits it. Reflecting less light than charcoal, on the surface the planet is said to be pitch black. The planet's mass and radius indicate that it is a gas giant with a bulk composition similar to that of Jupiter. Unlike Jupiter, but similar to many planets detected around other stars, TrES-2b is located very close to its star and belongs to the class of planets known as hot Jupiters. This system was within the field of view of the Kepler spacecraft.
Any planet is an extremely faint light source compared to its parent star. For example, a star like the Sun is about a billion times as bright as the reflected light from any of the planets orbiting it. In addition to the intrinsic difficulty of detecting such a faint light source, the light from the parent star causes a glare that washes it out. For those reasons, very few of the exoplanets reported as of January 2024 have been observed directly, with even fewer being resolved from their host star.
A Super-Earth or super-terran is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.
HD 189733 b is an exoplanet in the constellation of Vulpecula approximately 64.5 light-years away from the Solar System. Astronomers in France discovered the planet orbiting the star HD 189733 on October 5, 2005, by observing its transit across the star's face. With a mass 11.2% higher than that of Jupiter and a radius 11.4% greater, HD 189733 b orbits its host star once every 2.2 days at an orbital speed of 152.0 kilometers per second, making it a hot Jupiter with poor prospects for extraterrestrial life.
This page describes exoplanet orbital and physical parameters.
HAT-P-7b is an extrasolar planet discovered in 2008. It orbits very close to its host star and is larger and more massive than Jupiter. Due to the extreme heat that it receives from its star, the dayside temperature is predicted to be 2,630–2,880 K, while nightside temperatures are 2,211–2,238 K. HAT-P-7b is also one of the darkest planets ever observed, with an albedo of less than 0.03—meaning it absorbs more than 97% of the visible light that strikes it.
HAT-P-11b is an extrasolar planet orbiting the star HAT-P-11. It was discovered by the HATNet Project team in 2009 using the transit method, and submitted for publication on 2 January 2009.
WASP-17b, officially named Ditsö̀, is an exoplanet in the constellation Scorpius that is orbiting the star WASP-17. Its discovery was announced on 11 August 2009. It is the first planet discovered to have a retrograde orbit, meaning it orbits in a direction counter to the rotation of its host star. This discovery challenged traditional planetary formation theory. In terms of diameter, WASP-17b is one of the largest exoplanets discovered and at half Jupiter's mass, this made it the most puffy planet known in 2010. On 3 December 2013, scientists working with the Hubble Space Telescope reported detecting water in the exoplanet's atmosphere.
Kepler-4b, initially known as KOI 7.01, is an extrasolar planet first detected as a transit by the Kepler spacecraft. Its radius and mass are similar to that of Neptune; however, due to its proximity to its host star, it is substantially hotter than any planet in the Solar System. The planet's discovery was announced on January 4, 2010, in Washington, D.C., along with four other planets that were initially detected by the Kepler spacecraft and subsequently confirmed by telescopes at the W.M. Keck Observatory.
Kepler-6b is an extrasolar planet in the orbit of the unusually metal-rich Kepler-6, a star in the field of view of the NASA-operated Kepler spacecraft, which searches for planets that cross directly in front of, or transit, their host stars. It was the third planet to be discovered by Kepler. Kepler-6 orbits its host star every three days from a distance of .046 AU. Its proximity to Kepler-6 inflated the planet, about two-thirds the mass of Jupiter, to slightly larger than Jupiter's size and greatly heated its atmosphere.
Kepler-8b is the fifth of the first five exoplanets discovered by NASA's Kepler spacecraft, which aims to discover planets in a region of the sky between the constellations Lyra and Cygnus that transit their host stars. The planet is the hottest of the five. Kepler-8b was the only planet discovered in Kepler-8's orbit, and is larger than Jupiter. It orbits its host star every 3.5 days. The planet also demonstrates the Rossiter–McLaughlin effect, where the planet's orbit affects the redshifting of the spectrum of the host star. Kepler-8b was announced to the public on January 4, 2010 at a conference in Washington, D.C. after radial velocity measurements conducted at the W.M. Keck Observatory confirmed its detection by Kepler.
Kepler-4 is a sunlike star located about 1626 light-years away in the constellation Draco. It is in the field of view of the Kepler Mission, a NASA operation purposed with finding Earth-like planets. Kepler-4b, a Neptune-sized planet that orbits extremely close to its star, was discovered in its orbit and made public by the Kepler team on January 4, 2010. Kepler-4b was the first discovery by the Kepler satellite, and its confirmation helped to demonstrate the spacecraft's effectiveness.
Kepler-5 is a star located in the constellation Cygnus in the field of view of the Kepler Mission, a NASA project aimed at detecting planets in transit of, or passing in front of, their host stars as seen from Earth. One closely-orbiting, Jupiter-like planet, named Kepler-5b, has been detected around Kepler-5. Kepler-5's planet was one of the first five planets to be discovered by the Kepler spacecraft; its discovery was announced on January 4, 2010 at the 215th meeting of the American Astronomical Society after being verified by a variety of observatories. Kepler-5 is larger and more massive than the Sun, but has a similar metallicity, a major factor in planet formation.
Kepler-7 is a star located in the constellation Lyra in the field of view of the Kepler Mission, a NASA operation in search of Earth-like planets. It is home to the fourth of the first five planets that Kepler discovered; this planet, a Jupiter-size gas giant named Kepler-7b, is as light as styrofoam. The star itself is more massive than the Sun, and is nearly twice the Sun's radius. It is also slightly metal-rich, a major factor in the formation of planetary systems. Kepler-7's planet was presented on January 4, 2010 at a meeting of the American Astronomical Society.
An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 24 July 2024, there are 7,026 confirmed exoplanets in 4,949 planetary systems, with 1007 systems having more than one planet. This is a list of the most notable discoveries.
Kepler-13 or KOI-13 is a stellar triple star system consisting of Kepler-13A, around which an orbiting hot Jupiter exoplanet was discovered with the Kepler space telescope in 2011, and Kepler-13B a common proper motion companion star which has an additional star orbiting it.