Kepler-91b

Last updated
Kepler-91b
Discovery
Discovery date2013
Transit (Kepler Mission)
Orbital characteristics
0.072+0.007
−0.002
AU
6.24658 d
Inclination 68.5+1.6
−1
Star Kepler-91
Physical characteristics
Mean radius
1.322+0.094
−0.086
RJ
Mass 0.88+0.33
−0.17
MJ
Mean density
0.44  g/cm3 (0.016  lb/cu in)
Albedo 0.39 [1]
Temperature 2132 K

    Kepler-91b is a giant planet orbiting Kepler-91, a star slightly more massive than the Sun. Kepler-91 has left the main sequence and is now a red giant branch star.

    Contents

    Discovery and further confirmation

    Kepler-91b was detected by analyzing the data of Kepler spacecraft where a transit-like signal was found. Initially thought to be a false positive due to light curve variations by a self-luminous object, it was later revealed that due to low density of Kepler-91's shape is distorted to slightly ellipsoidal shape due to gravitational effects of the planet. Ellipsoidal light variations caused by Kepler-91b constitute more than the third of light variations compared to transit depth. Ellipsoidal light variations also allowed to determine the planet's mass. It was also found that Kepler-91b reflects some of the starlight from its star. [2]

    Further analysis managed to question the planetary nature of the object, suspecting that it is a self-luminous object. [3] However, the planetary nature was eventually confirmed again through both the radial velocity technique [4] and re-analysis of the light curve modulations. [5]

    Characteristics

    Kepler-91b is about 14% less massive than Jupiter while being more than 35% larger, making it less than half of the density of water. Kepler-91b orbits around the host star in about 6.25 days. Despite being one of the least edge-on orbits relative to Earth with inclination being about 68.5 degrees, transit was detected due to low semi-major axis to host star radius ratio.

    Kepler-91b is expected to be engulfed by the parent star within about 55 million years. [2] [1]

    Possible trojan companion

    The possibility of a trojan planet to Kepler-91b was suggested due to the presence of a small dim in the phase-folded light curve at phase 0.68. [2] This was subsequently studied but the conclusion was that the transit-signal was a false-positive. [6]

    Related Research Articles

    <span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

    An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

    <span class="mw-page-title-main">HAT-P-7b</span> Super Jupiter orbiting HAT-P-7

    HAT-P-7b is an extrasolar planet discovered in 2008. It orbits very close to its host star and is larger and more massive than Jupiter. Due to the extreme heat that it receives from its star, the dayside temperature is predicted to be 2,630–2,880 K K, while nightside temperatures are 2,211–2,238 K. HAT-P-7b is also one of the darkest planets ever observed, with an albedo of less than 0.03—meaning it absorbs more than 97% of the visible light that strikes it.

    HAT-P-8 is a magnitude 10 star located 700 light-years away in Pegasus. It is a F-type star about 28% more massive than the Sun. Two red dwarf companions have been detected around HAT-P-8. The first has a spectral type of M5V and has a mass of 0.22 M. The second is even less massive, at 0.18 M, and its spectral type is M6V.

    <span class="mw-page-title-main">Transit-timing variation</span> Exoplanet detection method using transit timing variations

    Transit-timing variation is a method for detecting exoplanets by observing variations in the timing of a transit. This provides an extremely sensitive method capable of detecting additional planets in the system with masses potentially as small as that of Earth. In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Detecting this effect by measuring the change is known as transit-timing variations. "Timing variation" asks whether the transit occurs with strict periodicity or if there's a variation.

    Kepler-41 or KOI-196 is a star in the constellation Cygnus. It is a G-type main-sequence star, like the Sun, and it is located about 3,68 light-years away. It is fairly similar to the Sun, with 115% of its mass, a radius of 129% times that of the Sun, and a surface temperature of 5,750 K. Search for stellar companions to Kepler-41 in 2013-2014 has yielded inconclusive results, compatible with Kepler-41 being the single star.

    Kepler-12 is a star with a transiting planet Kepler-12b in a 4-day orbit.

    HAT-P-17 is a K-type main-sequence star about 92.6 parsecs (302 ly) away. It has a mass of about 0.857 ± 0.039 M. It is the host of two planets, HAT-P-17b and HAT-P-17c, both discovered in 2010. A search for a binary companion star using adaptive optics at the MMT Observatory was negative. A candidate companion was detected by a spectroscopic search of high-resolution K band infrared spectra taken at the Keck observatory.

    Kepler-80, also known as KOI-500, is a red dwarf star of the spectral type M0V. This stellar classification places Kepler-80 among the very common, cool, class M stars that are still within their main evolutionary stage, known as the main sequence. Kepler-80, like other red dwarf stars, is smaller than the Sun, and it has both radius, mass, temperatures, and luminosity lower than that of our own star. Kepler-80 is found approximately 1,223 light years from the Solar System, in the stellar constellation Cygnus, also known as the Swan.

    Kepler-32 is an M-type main sequence star located about 1070 light years from Earth, in the constellation of Cygnus. Discovered in January 2012 by the Kepler spacecraft, it shows a 0.58 ± 0.05 solar mass (M), a 0.53 ± 0.04 solar radius (R), and temperature of 3900.0 K, making it half the mass and radius of the Sun, two-thirds its temperature and 5% its luminosity.

    Kepler-65 is a subgiant star slightly more massive than the Sun and has at least four planets.

    <span class="mw-page-title-main">Kepler-90g</span> Super-puff exoplanet in the constellation Draco

    Kepler-90g is a super-puff exoplanet orbiting the early G-type main sequence star Kepler-90, one of eight planets around this star discovered using NASA's Kepler space telescope. It is located about 2,840 light-years (870 pc) from Earth, in the constellation Draco. The exoplanet was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. It orbits its parent star about every 210.5 days at a distance of 0.71 astronomical units.

    Kepler-24b is an exoplanet orbiting the star Kepler-24, located in the constellation Lyra. It was discovered by the Kepler telescope in January 2012. It orbits its parent star at only 0.080 astronomical units away, and at its distance it completes an orbit once every 8.145 days.

    Kepler-24c is an exoplanet orbiting the star Kepler-24, located in the constellation Lyra. It was discovered by the Kepler telescope in January 2012. It orbits its parent star at only 0.106 astronomical units away, and at its distance it completes an orbit once every 12.3335 days.

    Kepler-13 or KOI-13 is a stellar triple star system consisting of Kepler-13A, around which an orbiting hot Jupiter exoplanet was discovered with the Kepler spacecraft in 2011, and Kepler-13B a common proper motion companion star which has an additional star orbiting it.

    HAT-P-18 is a K-type main-sequence star about 530 light-years away. The star is very old and has a concentration of heavy elements similar to solar abundance. A survey in 2015 detected very strong starspot activity on HAT-P-18.

    Kepler-167 is a K-type main-sequence star located about 1,119 light-years (343 pc) away from the Solar System in the constellation of Cygnus. The star has about 78% the mass and 75% the radius of the Sun, and a temperature of 4,884 K. It hosts a system of four known exoplanets. There is also a companion red dwarf star at a separation of about 700 AU, with an estimated orbital period of over 15,000 years.

    References

    1. 1 2 Esteves, Lisa J.; De Mooij, Ernst J. W.; Jayawardhana, Ray (2014). "Changing Phases of Alien Worlds: Probing Atmospheres of Kepler Planets with High-Precision Photometry". The Astrophysical Journal. 804 (2): 150. arXiv: 1407.2245 . Bibcode:2015ApJ...804..150E. doi:10.1088/0004-637X/804/2/150. S2CID   117798959.
    2. 1 2 3 Lillo-Box, J.; Barrado, D.; Moya, A.; Montesinos, B.; Montalbán, J.; Bayo, A.; Barbieri, M.; Régulo, C.; Mancini, L.; Bouy, H.; Henning, T. (2013). "Kepler-91b: A planet at the end of its life. Planet and giant host star properties via light-curve variations". Astronomy & Astrophysics. 562: A109. arXiv: 1312.3943 . Bibcode:2014A&A...562A.109L. doi:10.1051/0004-6361/201322001. S2CID   118486056.
    3. Sliski, David H.; Kipping, David M. (2014). "A High False Positive Rate for Kepler Planetary Candidates of Giant Stars using Asterodensity Profiling". The Astrophysical Journal. 788 (2): 148. arXiv: 1401.1207 . Bibcode:2014ApJ...788..148S. doi:10.1088/0004-637X/788/2/148. S2CID   118665291.
    4. Lillo-Box, J.; Barrado, D.; Henning, Th.; Mancini, L.; Ciceri, S.; Figueira, P.; Santos, N. C.; Aceituno, J.; Sánchez, S. (August 2014). "Radial velocity confirmation of Kepler-91 b". Astronomy & Astrophysics. 568: L1. arXiv: 1408.1528 . doi:10.1051/0004-6361/201424587. ISSN   0004-6361. S2CID   118424631.
    5. Barclay, Thomas; Endl, Michael; Huber, Daniel; Foreman-Mackey, Daniel; Cochran, William D.; MacQueen, Phillip J.; Rowe, Jason F.; Quintana, Elisa V. (2015). "Radial Velocity Observations and Light Curve Noise Modeling Confirm that Kepler-91b is a Giant Planet Orbiting a Giant Star". The Astrophysical Journal. 800 (1): 46. arXiv: 1408.3149 . Bibcode:2015ApJ...800...46B. doi:10.1088/0004-637X/800/1/46. ISSN   0004-637X. S2CID   118528237.
    6. Placek, Ben; Knuth, Kevin H.; Angerhausen, Daniel; Jenkins, Jon M. (2015). "Characterization of Kepler-91b and the Investigation of a Potential Trojan Companion Using EXONEST". The Astrophysical Journal. 814 (2): 147. arXiv: 1511.01068 . Bibcode:2015ApJ...814..147P. doi:10.1088/0004-637X/814/2/147. S2CID   118366565.