Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Scorpius |
Right ascension | 17h 18m 57.16483s [1] |
Declination | −34° 59′ 23.1416″ [1] |
Apparent magnitude (V) | 5.91/7.20/10.20 [2] |
Characteristics | |
Spectral type | K3V + K5V + M1.5V [2] [3] |
U−B color index | 0.83/???/1.17 |
B−V color index | 1.03/???/1.57 |
Variable type | A: suspected B: unknown C: flare star [ citation needed ] |
Astrometry | |
Radial velocity (Rv) | 6.13±0.30 [4] km/s |
Proper motion (μ) | RA: 1131.517 mas/yr [4] Dec.: −215.569 mas/yr [4] |
Parallax (π) | 138.0663 ± 0.0283 mas [4] |
Distance | 23.623 ± 0.005 ly (7.243 ± 0.001 pc) |
Absolute magnitude (MV) | 7.07/8.02/11.03 |
Details | |
GJ 667 AB | |
Mass | 0.73 / 0.69 [5] M☉ |
Radius | 0.76 / 0.70 [2] R☉ |
Metallicity [Fe/H] | –0.59 [6] dex |
GJ 667 C | |
Mass | 0.327±0.008 [7] M☉ |
Radius | 0.337±0.014 [7] R☉ |
Luminosity | 0.01439±0.00035 [7] L☉ |
Temperature | 3,443+75 −71 [7] K |
Metallicity [Fe/H] | –0.59 ± 0.10 [8] dex |
Rotation | 103.9±0.7 days [9] |
Age | 6.10±2.2 [10] Gyr |
Orbit [11] | |
Companion | Gliese 667 B |
Period (P) | 42.15 yr |
Semi-major axis (a) | 1.81″ |
Eccentricity (e) | 0.58 |
Inclination (i) | 128° |
Longitude of the node (Ω) | 313° |
Periastron epoch (T) | 1975.9 |
Argument of periastron (ω) (secondary) | 247° |
Other designations | |
Database references | |
AB | |
A | |
B | |
C | |
Cb | |
Cc | |
Ce | |
Cf | |
Exoplanet Archive | Gliese 667 C |
ARICNS | Gliese 667 A |
B | |
C |
Gliese 667 (142 G. Scorpii) is a triple-star system in the constellation Scorpius lying at a distance of about 7.2 parsecs (23 light-years ) from Earth. All three of the stars have masses smaller than the Sun. There is a 12th-magnitude star close to the other three, but it is not gravitationally bound to the system. To the naked eye, the system appears to be a single faint star of magnitude 5.89.
The system has a relatively high proper motion, exceeding 1 second of arc per year.
The two brightest stars in this system, GJ 667 A and GJ 667 B, are orbiting each other at an average angular separation of 1.81 arcseconds with a high eccentricity of 0.58. At the estimated distance of this system, this is equivalent to a physical separation of about 12.6 AU, or nearly 13 times the separation of the Earth from the Sun. Their eccentric orbit brings the pair as close as about 5 AU to each other, or as distant as 20 AU, corresponding to an eccentricity of 0.6. [note 1] [12] This orbit takes approximately 42.15 years to complete and the orbital plane is inclined at an angle of 128° to the line of sight from the Earth. The third star, GJ 667 C, orbits the GJ 667 AB pair at an angular separation of about 30", which equates to a minimum separation of 230 AU. [8] [13] GJ 667 C also has a system of two confirmed super-Earths and a number of additional doubtful candidates, though the innermost, GJ 667 Cb, may be a gas dwarf; GJ 667 Cc, and the controversial Cf and Ce, are in the circumstellar habitable zone. [14]
The largest star in the system, Gliese 667 A (GJ 667 A), is a K-type main-sequence star of stellar classification K3V. [2] It has about 73% [5] of the mass of the Sun and 76% [2] of the Sun's radius, but is radiating only around 12-13% of the luminosity of the Sun. [15] The concentration of elements other than hydrogen and helium, what astronomers term the star's metallicity, is much lower than in the Sun with a relative abundance of around 26% solar. [6] The apparent visual magnitude of this star is 6.29, which, at the star's estimated distance, gives an absolute magnitude of around 7.07 (assuming negligible extinction from interstellar matter).
Like the primary, the secondary star Gliese 667 B (GJ 667 B) is a K-type main-sequence star, although it has a slightly later stellar classification of K5V. This star has a mass of about 69% [5] of the Sun, or 95% of the primary's mass, and it is radiating about 5% of the Sun's visual luminosity. The secondary's apparent magnitude is 7.24, giving it an absolute magnitude of around 8.02.
Gliese 667 C is the smallest star in the system, with only around 33% [7] of the mass of the Sun and 34% [7] of the Sun's radius, orbiting approximately 230 AU from the Gliese 667 AB pair. [16] It is a red dwarf with a stellar classification of M1.5. This star is radiating only 1.4% of the Sun's luminosity from its outer atmosphere at a relatively cool effective temperature of 3,440 K. [7] This temperature is what gives it the red-hued glow that is a characteristic of M-type stars. [17] The apparent magnitude of the star is 10.25, giving it an absolute magnitude of about 11.03. It is known to have a system of two planets; claims have been made for up to five additional planets [18] but this is likely to be in error due to failure to account for correlated noise in the radial velocity data. [19] [20] The red dwarf status of the star would allow planet Cc, which is in the habitable zone, to receive minimal amounts of ultraviolet radiation. [16]
Two extrasolar planets, Gliese 667 Cb (GJ 667 Cb) and Cc, have been confirmed orbiting Gliese 667 C by radial velocity measurements of GJ 667. [19] [20] There were also thought to be up to five other potential additional planets; [8] [18] however, it was later shown that they are likely to be artifacts resulting from correlated noise. [19] [20]
Planet Cb was first announced by the European Southern Observatory's HARPS group on 19 October 2009. The announcement was made together with 29 other planets, while Cc was first mentioned by the same group in a pre-print made public on 21 November 2011. [21] Announcement of a refereed journal report came on 2 February 2012 by researchers at the University of Göttingen/Carnegie Institution for Science. [8] [22] In this announcement, GJ 667 Cc was described as one of the best candidates yet found to harbor liquid water, and thus, potentially, support life on its surface. [23] A detailed orbital analysis and refined orbital parameters for Gliese 667 Cc were presented. [8] Based on GJ 667 C's bolometric luminosity, GJ 667 Cc would receive 90% of the light Earth does; [15] however, much of that electromagnetic radiation would be in the invisible infrared light part of the spectrum.
From the surface of Gliese 667 Cc, the second-confirmed planet out that orbits along the middle of the habitable zone, Gliese 667 C would have an angular diameter of 1.24 degrees—2.3 times [note 2] larger than the Sun appears from the surface of the Earth, covering 5.4 times more area—but would still only occupy 0.003% of Gliese 667 Cc's sky sphere or 0.006% of the visible sky when directly overhead.
At one point, up to five additional planets were thought to exist in the system, with three of them thought to be relatively certain to exist. [18] However, multiple subsequent studies showed that the other proposed planets in the system were likely to be artifacts of noise and stellar activity, cutting the number of confirmed planets down to two. While one analysis did find some evidence for a third planet, Gliese 667 Cd with a period of about 90 days, but was unable to confirm it, [19] other studies found that that specific signal very likely originates from the stellar rotation. [20] [24] Thus, despite its inclusion in a list of planet candidates in a 2019 preprint (never accepted for publication as of 2024), [25] it is unlikely that Gliese 667 Cd exists.
Companion (in order from star) | Mass | Semimajor axis (AU) | Orbital period (days) | Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | ≥5.6±0.3 M🜨 | 0.050431±0.000004 | 7.1999±0.0009 | 0.15±0.05 | — | — |
c | ≥4.1±0.6 M🜨 | 0.12501±0.00009 | 28.10±0.03 | 0.27±0.1 | — | — |
Gliese 876 is a red dwarf star 15.2 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after GJ 1061, YZ Ceti, Tau Ceti, and Wolf 1061; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.
Gliese 436 is a red dwarf located 31.9 light-years away in the zodiac constellation of Leo. It has an apparent visual magnitude of 10.67, which is much too faint to be seen with the naked eye. However, it can be viewed with even a modest telescope of 2.4 in (6 cm) aperture. In 2004, the existence of an extrasolar planet, Gliese 436 b, was verified as orbiting the star. This planet was later discovered to transit its host star.
Gliese 229 is a binary system composed of a red dwarf and the second brown dwarf seen by astronomers, 18.8 light years away in the constellation Lepus. The primary component has 58% of the mass of the Sun, 69% of the Sun's radius, and a very low projected rotation velocity of 1 km/s at the stellar equator.
Gliese 581 is a red dwarf star of spectral type M3V which hosts a planetary system, 20.5 light-years away from Earth in the Libra constellation. Its estimated mass is about a third of that of the Sun, and it is the 101st closest known star system to the Sun. Gliese 581 is one of the oldest, least active M dwarfs known. Its low stellar activity improves the likelihood of its planets retaining significant atmospheres, and lessens the sterilizing impact of stellar flares.
Gliese 832 is a red dwarf of spectral type M2V in the southern constellation Grus. The apparent visual magnitude of 8.66 means that it is too faint to be seen with the naked eye. It is located relatively close to the Sun, at a distance of 16.2 light years and has a high proper motion of 818.16 milliarcseconds per year. Gliese 832 has just under half the mass and radius of the Sun. Its estimated rotation period is a relatively leisurely 46 days. The star is roughly 6 billion years old.
Gliese 176 is a small star with an orbiting exoplanet in the constellation of Taurus. With an apparent visual magnitude of 9.95, it is too faint to be visible to the naked eye. It is located at a distance of 30.9 light years based on parallax measurements, and is drifting further away with a heliocentric radial velocity of 26.4 km/s.
Gliese 832 b is a gas giant exoplanet about 80% the mass of Jupiter, located 16.2 light-years from the Sun in the constellation of Grus, orbiting the red dwarf star Gliese 832.
Gliese 752 is a binary star system in the Aquila constellation. This system is relatively nearby, at a distance of 19.3 light-years.
Gliese 433 is a dim red dwarf star with multiple exoplanetary companions, located in the equatorial constellation of Hydra. The system is located at a distance of 29.6 light-years from the Sun based on parallax measurements, and it is receding with a radial velocity of +18 km/s. Based on its motion through space, this is an old disk star. It is too faint to be viewed with the naked eye, having an apparent visual magnitude of 9.81 and an absolute magnitude of 10.07.
Gliese 667 Cc is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star.
Gliese 163 is a faint red dwarf star with multiple exoplanetary companions in the southern constellation of Dorado. Other stellar catalog names for it include HIP 19394 and LHS 188. It is too faint to be visible to the naked eye, having an apparent visual magnitude of 11.79 and an absolute magnitude of 10.91. This system is located at a distance of 49.4 light-years from the Sun based on parallax measurements. Judging by its space velocity components, it is most likely a thick disk star.
Gliese 221, also known as BD-06 1339, is a star with an exoplanetary companion in the equatorial constellation of Orion. It is too faint to be visible to the naked eye, having an apparent visual magnitude of 9.70 and an absolute magnitude of 8.15. Using parallax measurements, the distance to this system can be estimated as 66.2 light-years. It is receding from the Sun with a radial velocity of +23 km/s. This is a high proper motion star, traversing the celestial sphere at an angular rate of 0.333″·yr−1.
Gliese 754 is a dim star in the southern constellation of Telescopium. It has an apparent visual magnitude of 12.25, which requires a telescope to view. The star is located at a distance of 19.3 light-years from the Sun based on parallax, and it is drifting further away with a radial velocity of +7 km/s. It is one of the hundred closest stars to the Solar System. Calculations of its orbit around the Milky Way showed that it is eccentric, and indicate that it might be a thick disk object.
Gliese 180, is a small red dwarf star in the equatorial constellation of Eridanus. It is invisible to the naked eye with an apparent visual magnitude of 10.9. The star is located at a distance of 39 light years from the Sun based on parallax, and is drifting closer with a radial velocity of −14.6 km/s. It has a high proper motion, traversing the sky at the rate of 0.765 arcseconds per year.
GJ 3323 is a nearby single star located in the equatorial constellation Eridanus, about 0.4° to the northwest of the naked eye star Psi Eridani. It is invisible to the naked eye with an apparent visual magnitude 12.20. Parallax measurements give a distance estimate of 17.5 light-years from the Sun. It is drifting further away with a radial velocity of +42.3 km/s. Roughly 104,000 years ago, the star is believed to have come to within 7.34 ± 0.16 light-years of the Solar System.
Luyten b is a confirmed exoplanet, likely rocky, orbiting within the habitable zone of the nearby red dwarf Luyten's Star. It is the fourth-closest potentially habitable exoplanet known, at a distance of 12 light-years. Only Proxima Centauri b, Ross 128 b, and GJ 1061 d are closer. Discovered alongside Gliese 273c in June 2017, Luyten b is a super-Earth of around 2.89 times the mass of Earth and receives only 6% more starlight than Earth, making it one of the best candidates for habitability.
Gliese 49 is a star in the northern constellation of Cassiopeia. Visually, it is located 106 arcminutes north of the bright star γ Cassiopeiae. With an apparent visual magnitude of 9.56, it is not observable with the naked eye. It is located, based on the reduction of parallax data of Gaia, 32.1 light-years away from the Solar System. The star is drifting closer to the Sun with a radial velocity of −6 km/s.
Gliese 686 is a star in the constellation of Hercules, with an apparent magnitude +9.577. Although it is close to the Solar System – at 26.6 light-years – it is not the closest known star in its constellation, since Gliese 661 is 20.9 light years away. The closest system to this star is the bright μ Herculis, at 4.5 light years. They are followed by GJ 1230 and Gliese 673, at 7.2 and 7.6 light years respectively.
HD 189567 is a star with a pair of orbiting exoplanets, located in the southern constellation of Pavo. It is also known as Gliese 776, CD-67 2385, and HR 7644. The star has an apparent visual magnitude of 6.07, which is bright enough for it to be dimly visible to the naked eye. It lies at a distance of 58 light years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of −10.5 km/s.
Media related to Gliese 667 at Wikimedia Commons