HIP 79431 b

Last updated
HIP 79431 b / Barajeel
Discovery
Discovered by Apps et al.
Discovery site Keck Observatory
Discovery dateJanuary 7, 2010
Doppler spectroscopy
Orbital characteristics
Apastron 0.46 AU (69,000,000 km)
Periastron 0.25 AU (37,000,000 km)
0.36 AU (54,000,000 km)
Eccentricity 0.29
111.7 ± 0.7 d
0.306 y
Average orbital speed
35
2454980.3 ± 1.2
287.4 ± 3.2
Star HIP 79431

    HIP 79431 b is an extrasolar planet discovered by the W. M. Keck Observatory in 2010. The planet is found in an M type dwarf star catalogued as HIP 79431, and is located within the Scorpius constellation approximately 47 light years away from the Earth. Its orbital period lasts about 111.7 days and has an orbital eccentricity of 0.29. The planet is the 6th giant planet to be detected in the Doppler surveys of M dwarfs and is considered to be one of the most massive planets found around M dwarf stars. [1] [2] [3] [4]

    Contents

    The planet HIP 79431 b is named Barajeel. The name was selected in the NameExoWorlds campaign by the United Arab Emirates, during the 100th anniversary of the IAU. A barajeel is a wind tower used to direct the flow of the wind so that air can be recirculated as a form of air conditioning. [5] [6]

    Observations

    HIP 79431 b is located in orbit around a star whose metallicity had been challenging to be assessed due to the uncertainties within the molecular data line, however it has not been typical for M Dwarfs to have strong emissions from the core data lines. This led to the inclusion of the HIP 79431 star to the KECK program in April 2009 as part of the exoplanet studies for low mass stars. During this study, 13 Doppler measurements of the star were done over a 6-month period using the High Resolution Echelle Spectrometer (HIRES). The exposure times used in its observation was 600 seconds which yielded a signal-to-noise ratio of just under 100. Each program observation required the use of iodine absorption lines in order to model the wavelength scale as well as the instrumental profile of the telescope and spectrometer optics. The Doppler experiments derived radial velocities fit the Keplerian model showing an unambiguous signal and orbital parameters which best fit planetary gravitational pull, this revealed the presence of the planet HIP 79431 b. However, there is no evidence that any additional planets was found. [7] [8] [9]

    Low transit possibility

    The planet HIP 79431 b has a low transit probability mainly due to its semi-major axis orientation. Another observation with regard to its eccentricity orbit is that it brings the planet closer to its star periastron increasing the probability of a transit, which was estimated as a meager 0.5%. According to the KECK program, if a transit would occur, the depth would be remarkable mainly due to the calculated mass of the planet. [10]

    See also

    Related Research Articles

    <span class="mw-page-title-main">Lalande 21185</span> Star in the constellation Ursa Major

    Lalande 21185 is a star in the south of Ursa Major. It is the apparent brightest red dwarf in the northern hemisphere. Despite this, and being relatively close by, it is very dim, being only magnitude 7.5 in visible light and thus too faint to be seen with the unaided eye. The star is visible through a small telescope or binoculars.

    <span class="mw-page-title-main">Theta Persei</span> Star system in the constellation Perseus

    Theta Persei is a star system 37 light years away from Earth, in the constellation Perseus. It is one of the closest naked-eye stars.

    HD 68988 is a star in the northern constellation of Ursa Major. It has been given the proper name Násti, which means star in the Northern Sami language. The name was selected in the NameExoWorlds campaign by Norway, during the 100th anniversary of the IAU. HD 68988 is too faint to be seen with the naked eye, having an apparent visual magnitude of 8.20. The star is located at a distance of 199 light years from the Sun based on parallax. It is drifting closer with a radial velocity of −69 km/s and is predicted to come as close as 78 light-years in 617,000 years.

    HD 16760 is a binary star system approximately 227 light-years away in the constellation Perseus. The primary star HD 16760 is a G-type main sequence star similar to the Sun. The secondary, HIP 12635 is 1.521 magnitudes fainter and located at a separation of 14.6 arcseconds from the primary, corresponding to a physical separation of at least 660 AU. Announced in July 2009, HD 16760 has been confirmed to have a red dwarf orbiting it, formerly thought to be a brown dwarf or exoplanet.

    Gliese 649 is a small star with an orbiting exoplanet in the constellation Hercules. It has an apparent visual magnitude of 9.7, which is too faint to be seen with the naked eye. The system is located at a distance of 33.9 light years based on parallax, and is drifting further away with a radial velocity of 3.8 km/s.

    Gliese 649 b, or Gl 649 b is an extrasolar planet, orbiting the 10th magnitude M-type star Gliese 649, 10 parsecs from earth. This planet is a sub-Jupiter, massing 0.328 Jupiter mass and orbits at 1.135 AU.

    Gliese 179 is a small red dwarf star with an exoplanetary companion in the equatorial constellation of Orion. It is much too faint to be visible to the naked eye with an apparent visual magnitude of 11.94. The system is located at a distance of 40.5 light-years from the Sun based on parallax measurements, but is drifting closer with a radial velocity of –9 km/s. It is a high proper motion star, traversing the celestial sphere at an angular rate of 0.370″·yr−1.

    HIP 79431 is a red dwarf star with a non-stellar companion in the constellation Scorpius. It has the proper name Sharjah, as selected in the NameExoWorlds campaign by United Arab Emirates, during the 100th anniversary of the IAU. Sharjah is the cultural capital of United Arab Emirates. The star has an apparent visual magnitude of 11.34, which is far too faint to be visible to the naked eye. Based on parallax measurements, this system is located at a distance of 47.4 light-years from the Sun. It is drifting closer with a radial velocity of −5 km/s.

    HD 180902 b is an extrasolar planet orbiting the K-type star HD 180902 approximately 342 light years away in the constellation Sagittarius.

    <span class="mw-page-title-main">HD 4313 b</span> Extrasolar planet in the constellation Pisces

    HD 4313 b is an extrasolar planet orbiting the K-type star HD 4313 approximately 447 light years away in the constellation Pisces. This planet was discovered using the Doppler spectroscopy method.

    HD 180902 is a binary star approximately 342 light years away in the constellation Sagittarius. The primary is a K-type star while the nature of the secondary is unknown since it has only been detected by its effect on the radial velocity of the primary.

    LHS 6343 is a star system in the northern constellation of Lyra. It appears exceedingly faint with a combined apparent magnitude of 13.435. Based on its stellar properties, the system is thought to be about 119.4 light-years away.

    HD 4313 is a star with an orbiting exoplanetary companion in the constellation of Pisces. It has an apparent visual magnitude of 7.83, which is too faint to be reading visible to the unaided eye. The systam is located at a distance of 446 light years based on parallax, and is drifting further away with a radial velocity of 14.5 km/s. This is a single star, which means it has no binary partners, at least in range of projected separations from 6.85 to 191.78 AU. It hosts an extrasolar planet.

    HD 212771, also named Lionrock, is a solitary star in the southern zodiac constellation Aquarius. It has an apparent magnitude of 7.60, making it readily visible with binoculars but not the naked eye. Parallax measurements place the object at a distance of 364 light years, and is currently receding with a radial velocity of 15 km/s.

    The TESS-Keck Survey or TKS is an exoplanet search project that uses the Keck I and the Automated Planet Finder (APF) to conduct ground-based follow-up of planet candidates discovered by the Transiting Exoplanet Survey Satellite. The TKS aims to measure the mass for about 100 exoplanets and has been awarded some of the largest time allocations in the histories of Keck I and APF. The program has four main science themes:

    1. the bulk compositions of small planets
    2. dynamical temperatures and system architectures
    3. a larger, more refined sample for future atmospheric studies
    4. planets orbiting evolved stars

    References

    1. "M Dwarf Planets". Deep Fly. Archived from the original on 2010-03-01. Retrieved 2010-02-09.
    2. "Planet : HIP 79431 b". Extrasolar Planets Encyclopaedia . Retrieved 2010-02-09.
    3. Kevin Apps; Clubb; Fischer; Eric Gaidos; Howard; Johnson; Marcy; Howard Isaacson; Giguere (2010). "M2K A Jovian Mass Planet around M3V star HIP 79431". Publications of the Astronomical Society of the Pacific. 122 (888): 156–161. arXiv: 1001.1174 . Bibcode:2010PASP..122..156A. doi:10.1086/651058. S2CID   119186731.
    4. "Estrella: HIP 79431". NASA. Archived from the original on 2010-07-03. Retrieved 2010-02-09.
    5. "Approved names". NameExoworlds. Retrieved 2020-01-02.
    6. "International Astronomical Union | IAU". www.iau.org. Retrieved 2020-01-02.
    7. Apps, Kevin; Clubb, Kelsey I; Fischer, Debra A; Gaidos, Eric; Howard, Andrew; Johnson, John A; Marcy, Geoffrey W; Isaacson, Howard; Giguere, Matthew J; Valenti, Jeff A; Rodriguez, Victor; Chubak, Carly; Lepine, Sebastien (2010). "M2K: I. A Jupiter-Mass Planet Orbiting the M3V Star HIP 79431". Publications of the Astronomical Society of the Pacific. 122 (888): 156–161. arXiv: 1001.1174 . Bibcode:2010PASP..122..156A. doi:10.1086/651058. S2CID   119186731.
    8. Kevin Apps; Clubb; Fischer; Eric Gaidos; Howard; Johnson; Marcy; Howard Isaacson; Giguere (2010). "Addition to the KECK Program of HIP 79431". Publications of the Astronomical Society of the Pacific. 122 (888): 156–161. arXiv: 1001.1174 . Bibcode:2010PASP..122..156A. doi:10.1086/651058. S2CID   119186731.
    9. M. B. N. Kouwenhoven; A. G. A. Brown; L. Kaper (2007). "A brown dwarf desert for intermediate mass stars in Scorpius OB2?". Astronomy and Astrophysics . 464 (2): 581–599. arXiv: astro-ph/0611903 . Bibcode:2007A&A...464..581K. doi:10.1051/0004-6361:20054396. S2CID   14073982.
    10. Kevin Apps; Clubb; Fischer; Eric Gaidos; Howard; Johnson; Marcy; Howard Isaacson; Giguere (2010). "Transit Ephemeris". Publications of the Astronomical Society of the Pacific. 122 (888): 156–161. arXiv: 1001.1174 . Bibcode:2010PASP..122..156A. doi:10.1086/651058. S2CID   119186731.