U Scorpii

Last updated
U Scorpii
UScoLocation.png
Location of U Scorpii (circled in red)
Observation data
Epoch J2000       Equinox J2000
Constellation Scorpius
Right ascension 16h 22m 30.78s [1]
Declination −17° 52 42.8 [1]
Apparent magnitude  (V)7.5 Max.
17.6 Min. [2]
Characteristics
Spectral type  ? / White Dwarf
Variable type Recurrent nova [2]
Astrometry
Radial velocity (Rv)65 [3]  km/s
Proper motion (μ)RA: −0.380±0.202 [4]   mas/yr
Dec.: −7.591±0.144 [4]   mas/yr
Parallax (π)−0.0945 [4]  ± 0.1334 [4]   mas [4]
Distance 19600+21000
−5300
[2]   pc
Other designations
AAVSO 1616-17, Nova Sco 1863, BD−17 4554, Gaia DR2  6246188565119443072, 2MASS J16223079-1752431 [3]
Database references
SIMBAD data

U Scorpii (U Sco) is a recurrent nova system; one of 10 known recurring novae in the Milky Way galaxy. [5] Located near the northern edge of the constellation Scorpius it normally has a magnitude of 18, but reaches a magnitude of about 8 during outbursts. Outbursts have been observed in 1863, 1906, 1936, 1979, 1987, 1999, 2010, and 2022. [6] [7]

The 2010 outburst was predicted to occur April 2009 ± 1.0 year, based on observations during quiescence following the 1999 outburst. [8] The U Sco 2010 eruption faded by 1 magnitude in 1 day, and by 4 magnitudes in 6 days. By February 6 it was dimmer than magnitude 13. Between February 10–19, it was flickering around magnitude 14. The eruption ended on day 64, which is the fastest observed decline to quiescence of recurring nova. This eruption of U Sco is now the best-observed nova event with 22,000 magnitudes already accumulated. Astronomers have predicted that another eruption of U Sco will occur in 2020±2. This prediction was correct; it brightened to +7.8 magnitude on 6 June 2022. [9]

AAVSO light curve of recurrent nova U Sco from 1 Jan 2010 to 1 Sept 2010. Up is brighter and down is fainter. Day numbers are Julian day. Different colors reflect different bandpasses. U-Sco-2010-Lightcurve-AAVSO.png
AAVSO light curve of recurrent nova U Sco from 1 Jan 2010 to 1 Sept 2010. Up is brighter and down is fainter. Day numbers are Julian day. Different colors reflect different bandpasses.

Originally identified in 1863 by English astronomer N.R. Pogson, U Scorpii was the third recurrent nova to be identified, in the years preceding World War II by Helen L. Thomas. [10] [11]

Related Research Articles

<span class="mw-page-title-main">Nova</span> Nuclear explosion in a white dwarf star

A nova is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star that slowly fades over weeks or months. Causes of the dramatic appearance of a nova vary, depending on the circumstances of the two progenitor stars. All observed novae involve white dwarfs in close binary systems. The main sub-classes of novae are classical novae, recurrent novae (RNe), and dwarf novae. They are all considered to be cataclysmic variable stars.

<span class="mw-page-title-main">T Pyxidis</span> Recurrent nova star in the constellation Pyxis

T Pyxidis is a recurrent nova and nova remnant in the constellation Pyxis. It is a binary star system and its distance is estimated at about 4,783 parsecs from Earth. It contains a Sun-like star and a white dwarf. Because of their close proximity and the larger mass of the white dwarf, the latter draws matter from the larger, less massive star. The influx of matter on the white dwarf's surface causes periodic thermonuclear explosions to occur.

<span class="mw-page-title-main">T Coronae Borealis</span> Recurrent nova in the constellation Corona Borealis

T Coronae Borealis, is a recurring nova in the constellation Corona Borealis. It was first discovered in outburst in 1866 by John Birmingham, although it had been observed earlier as a 10th magnitude star.

<span class="mw-page-title-main">RS Ophiuchi</span> Recurrent nova in the constellation Ophiuchus

RS Ophiuchi is a recurrent nova system approximately 5,000 light-years away in the constellation Ophiuchus. In its quiet phase it has an apparent magnitude of about 12.5. It has been observed to erupt in 1898, 1933, 1958, 1967, 1985, 2006 and 2021 and reached about magnitude 5 on average. A further two eruptions, in 1907 and 1945, have been inferred from archival data. The recurrent nova is produced by a white dwarf star and a red giant in a binary system. About every 15 years, enough material from the red giant builds up on the surface of the white dwarf to produce a thermonuclear explosion. The white dwarf orbits close to the red giant, with an accretion disc concentrating the overflowing atmosphere of the red giant onto the white dwarf.

<span class="mw-page-title-main">HR Lyrae</span> Nova that appeared in 1919

HR Lyrae or Nova Lyrae 1919 was a nova which occurred in the constellation Lyra in 1919. Its discovery was announced by Johanna C. Mackie on 6 December 1919. She discovered it while examining photographic plates taken at the Harvard College Observatory. The bulletin announcing the discovery states "Between December 4 and 6 it rose rapidly from the sixteenth magnitude or fainter, to a maximum of about 6.5". It was the first nova ever reported in Lyra, and Mackie was awarded the AAVSO gold medal for her discovery. Its peak magnitude of 6.5 implies that it might have been visible to the naked eye, under ideal conditions.

<span class="mw-page-title-main">V849 Ophiuchi</span> Nova in the constellation Ophiuchus

V849 Ophiuchi or Nova Ophiuchi 1919 was a nova that erupted in 1919, in the constellation Ophiuchus, and reached a blue band brightness of magnitude 7.2. Joanna C. S. Mackie discovered the star while she was examining Harvard College Observatory photographic plates. The earliest plate it was visible on was exposed on August 20, 1919, when the star was at magnitude 9.4. It reached magnitude 7.5 on September 13 of that year. In its quiescent state it has a visual magnitude of about 18.8. V849 Ophiuchi is classified as a "slow nova"; it took six months for it to fade by three magnitudes.

<span class="mw-page-title-main">FH Serpentis</span> 1970 Nova in the constellation Serpens

FH Serpentis was a nova, which appeared in the constellation Serpens in 1970. It reached magnitude 4.4. It was discovered on February 13, 1970 by Minoru Honda located at Kurashiki, Japan. Other astronomers later studied this nova, and calculated its distances based on the decay time of its light curves.

<span class="mw-page-title-main">NQ Vulpeculae</span> 1976 Nova seen in the constellation Vulpecula

NQ Vulpeculae also known as Nova Vulpeculae 1976, was a nova that appeared in the constellation Vulpecula in 1976. It was discovered visually at 18:20 UT on October 21, 1976 by English amateur astronomer George Alcock. Its apparent magnitude at the time of discovery was 6.5 It reached its maximum brightness of magnitude 6.0 thirteen days after its discovery, at which point it may have been faintly visible to the naked eye. A few days after maximum brightness, it had faded to magnitude 8.3.

<span class="mw-page-title-main">V838 Herculis</span> 1991 Nova seen in the constellation Hercules

V838 Herculis, also known as Nova Herculis 1991, was a nova which occurred in the constellation Hercules in 1991. It was discovered by George Alcock of Yaxley, Cambridgeshire, England at 4:35 UT on the morning of 25 March 1991. He found it with 10×50 binoculars, and on that morning its apparent visual magnitude was 5. Palomar Sky Survey plates showed that before the outburst, the star was at photographic magnitude 20.6 and 18.25.

<span class="mw-page-title-main">V1494 Aquilae</span> Nova seen in 1999 in the constellation of Aquila

V1494 Aquilae or Nova Aquilae 1999 b was a nova which occurred during 1999 in the constellation Aquila and reached a brightness of magnitude 3.9 on 2 December 1999. making it easily visible to the naked eye. The nova was discovered with 14×100 binoculars by Alfredo Pereira of Cabo da Roca, Portugal at 18:50 UT on 1 December 1999, when it had a visual magnitude of 6.0.

<span class="mw-page-title-main">U Geminorum</span> Star in the constellation Gemini

U Geminorum, in the constellation Gemini, is an archetypal example of a dwarf nova. The binary star system consists of a white dwarf closely orbiting a red dwarf. Every few months it undergoes an outburst that greatly increases its brightness. The dwarf nova class of variable stars are often referred to as U Geminorum variables after this star.

<span class="mw-page-title-main">V1280 Scorpii</span>

V1280 Scorpii is the first of two novae that occurred in the constellation Scorpius during February 2007. Announced by the IAU in Electronic Telegram No. 835 and Circular No. 8803, the nova's magnitude was 9.6 when it was discovered on CCD images taken at 20:42 UT on 4 February 2007 by Yuji Nakamura of Kameyama, Mie, Japan. It was independently discovered on the same night at 20:30 UT by Yukio Sakurai of Mito, Ibaraki, Japan. It peaked at magnitude 3.79 on February 17, making it easily visible to the naked eye. V1280 Scorpii is two degrees south of M62.

<span class="mw-page-title-main">RZ Gruis</span> Star in the constellation of Grus

RZ Gruis is a nova-like binary system in the constellation Grus composed of a white dwarf and an F-type main-sequence star. It is generally of apparent magnitude of 12.3 with occasional dimming to 13.4. Its components are thought to orbit each other roughly every 8.5 to 10 hours. It belongs to the UX Ursae Majoris subgroup of cataclysmic variable star systems, where material from the donor star is drawn to the white dwarf where it forms an accretion disc that remains bright and outshines the two component stars. The system is around 1,434 light-years away from Earth; or as much as 1,770 light years based on a Gaia parallax.

<span class="mw-page-title-main">V1017 Sagittarii</span> Star in the constellation Sagittarius

V1017 Sagittarii is a cataclysmic variable star system in the constellation Sagittarius. It first erupted in 1919, reaching magnitude 7. Its other eruptions in 1901, 1973 and 1991 only reached magnitude 10, leading it to be reclassified from a recurrent nova to a dwarf nova.

<span class="mw-page-title-main">IM Normae</span> Recurrent nova in the constellation Norma

IM Normae is a recurrent nova in the constellation Norma, one of only ten known in the Milky Way. It has been observed to erupt in 1920 and 2002, reaching magnitude 8.5 from a baseline of 18.3. It was poorly monitored after the first eruption, so it is possible that it erupted in between these dates.

V1309 Scorpii is a contact binary that merged into a single star in 2008 in a process known as a luminous red nova. It was the first star to provide conclusive evidence that contact binary systems end their evolution in a stellar merger. Its similarities to V838 Monocerotis and V4332 Sagittarii allowed scientists to identify these stars as merged contact binaries as well.

<span class="mw-page-title-main">V455 Andromedae</span> Dwarf nova star in the constellation Andromeda

V455 Andromedae is a dwarf nova in the constellation Andromeda. It has a typical apparent visual magnitude of 16.5, but reached a magnitude of 8.5 during the only observed outburst.

<span class="mw-page-title-main">V728 Scorpii</span> Nova seen in 1862

V728 Scorpii, also known as Nova Scorpii 1862, was a nova that occurred in the constellation of Scorpius. It was discovered on 4 October 1862 by John Tebbutt, an astronomer living in New South Wales, Australia, while he was observing a comet. He reported that the star was in the constellation Ara. At the time of its discovery, the nova had an apparent magnitude of 5, making it visible to the unaided eye. Nine days later it had faded to below 11th magnitude, indicating that it was a very fast nova.

<span class="mw-page-title-main">EL Aquilae</span> 1927 nova in the constellation Aquila

EL Aquilae, also known as Nova Aquilae 1927 was a nova that appeared in 1927. It was discovered by Max Wolf on photographic plates taken at Heidelberg Observatory on 30 and 31 July 1927 when it had a photographic magnitude of 9. Subsequent searches of plates taken at the Harvard College Observatory showed the nova was fainter than magnitude 11.1 on 8 June 1927 and had flared to magnitude 6.4 on 15 June 1927. It declined from peak brightness at an average rate of 0.105 magnitudes per day, making it a fast nova, and ultimately dimmed to about magnitude 21. The 14.5 magnitude change from peak brightness to quiescence was unusually large for a nova.

<span class="mw-page-title-main">V1370 Aquilae</span> Nova that occurred in 1982

V1370 Aquilae, also known as Nova Aquilae 1982, is a nova that appeared in the constellation Aquila during 1982. It was discovered by Minoru Honda of Kurashiki, Japan at 20:30 UT on 27 January 1982. At that time the Sun had moved just far enough from Aquila to allow the nova to be seen in the morning sky. Although it was discovered photographically, its apparent magnitude was 6–7, making it potentially visible to the naked eye under ideal conditions. A possible magnitude 20 progenitor was located on the Palomar Sky Survey prints. Spectra of the object were taken in February 1982 at Asiago Astrophysical Observatory, which confirmed that it is a nova.

References

  1. 1 2 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 . Gaia DR2 record for this source at VizieR.
  2. 1 2 3 Schaefer, Bradley E. (2018). "The distances to Novae as seen by Gaia". Monthly Notices of the Royal Astronomical Society. 481 (3): 3033–3051. arXiv: 1809.00180 . Bibcode:2018MNRAS.481.3033S. doi:10.1093/mnras/sty2388. S2CID   118925493.
  3. 1 2 "U Scorpii". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2019-08-17.
  4. 1 2 3 4 5 Vallenari, A.; et al. (Gaia Collaboration) (2022). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy & Astrophysics . arXiv: 2208.00211 . doi: 10.1051/0004-6361/202243940 . Gaia DR3 record for this source at VizieR.
  5. Comprehensive Photometric Histories of All Known Galactic Recurrent Novae, B. Schaefer
  6. The 1999 Outburst of the Recurrent Nova U Scorpii, Anupama & Dewangan
  7. Thar She Blows! U Scorpii Erupts as Predicted, A. MacRobert
  8. B. Schaefer; A. Pagnotta; et al. (October 2010). "Discovery of the 2010 Eruption and the Pre-Eruption Light Curve for Recurrent Nova U Scorpii". The Astronomical Journal. 140 (4): 925–932. arXiv: 1004.2842 . Bibcode:2010AJ....140..925S. doi:10.1088/0004-6256/140/4/925. S2CID   118394042 . Retrieved 12 February 2015.
  9. Matthew Templeton (May 6, 2010). "Long-term monitoring of the recurrent nova U Scorpii". AAVSO. Retrieved 2010-11-15.
  10. Templeton, Matthew. "U Scorpii | aavso". www.aavso.org. Retrieved 2022-05-28.
  11. "Eloge: Helen Meriwether Lewis Thomas, 21 August 1905-6 August 1997". Isis. 89 (2): 316–317. 1998-06-01. doi:10.1086/384004. ISSN   0021-1753. S2CID   144636725.