Kepler-24e

Last updated
Kepler-24e
Discovery
Discovered by Jason F. Rowe et al. [1]
Discovery date26 February 2014
Transit method
Orbital characteristics
0.138 AU (20.6 million km) [1]
18.99850923(9537) [2] d
StarKepler-24
Physical characteristics
Mean radius
0.248 ± 0.057 [1] RJ

    Kepler-24e is a transiting exoplanet orbiting the star Kepler-24, located in the constellation Lyra. It was discovered by the Kepler telescope in February 2014. It orbits its parent star at only 0.138 astronomical units away, and at its distance it completes an orbit once every 19 days. [1]

    Related Research Articles

    Kepler-80, also known as KOI-500, is a red dwarf star of the spectral type M0V. This stellar classification places Kepler-80 among the very common, cool, class M stars that are still within their main evolutionary stage, known as the main sequence. Kepler-80, like other red dwarf stars, is smaller than the Sun, and it has both radius, mass, temperatures, and luminosity lower than that of our own star. Kepler-80 is found approximately 1,223 light years from the Solar System, in the stellar constellation Cygnus, also known as the Swan.

    Kepler-23 is a star in the northern constellation of Cygnus, the swan, that is orbited by a planet found to be unequivocally within the star's habitable zone. With an apparent visual magnitude of 14.0, this star is too faint to be seen with the naked eye.

    <span class="mw-page-title-main">Kepler-138</span> Red dwarf in the constellation Lyra

    Kepler-138, also known as KOI-314, is a red dwarf located in the constellation Lyra, 219 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets transiting their stars.

    Kepler-298d is an exoplanet orbiting Kepler-298, 473.69 parsecs away. Kepler-298d was discovered in 2014, it orbits its star in the Habitable zone. Kepler-298d was thought to be an Earth-like planet, further research shows that its atmosphere is +2.11 on the HZA scale, this means the planet may be an ocean planet with a thick gas atmosphere like a dwarf-giant.

    Kepler-296e is a confirmed Earth-sized exoplanet orbiting within the habitable zone of Kepler-296. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the discovery of the exoplanet on 26 February 2014.

    Kepler-296f is a confirmed super-Earth exoplanet orbiting within the habitable zone of Kepler-296. The planet was discovered by NASA's Kepler spacecraft using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. NASA announced the discovery of the exoplanet on 26 February 2014.

    Kepler-296 is a binary star system in the constellation Draco. The primary star appears to be a late K-type main-sequence star, while the secondary is a red dwarf.

    Kepler-371 is a star some 2,720 ly away from the Earth. It hosts a multi planetary system consisting of 2 confirmed Super-Earths, as well as 1 unconfirmed Near-Earth sized exoplanet in its habitable zone.

    Kepler-24b is an exoplanet orbiting the star Kepler-24, located in the constellation Lyra. It was discovered by the Kepler telescope in January 2012. It orbits its parent star at only 0.08 astronomical units away, and at its distance it completes an orbit once every 8.145 days.

    Kepler-24c is an exoplanet orbiting the star Kepler-24, located in the constellation Lyra. It was discovered by the Kepler telescope in January 2012. It orbits its parent star at only 0.106 astronomical units away, and at its distance it completes an orbit once every 12.3335 days.

    Kepler-24d is a transiting exoplanet orbiting the star Kepler-24, located in the constellation Lyra. It was discovered by the Kepler telescope in February 2014. It orbits its parent star at only 0.051 astronomical units away, and at its distance it completes an orbit once every 4.244384 days.

    Kepler-26e is an exoplanet orbiting the star Kepler-26, located in the constellation Lyra. It was discovered by the Kepler telescope in February 2014. It orbits its parent star at only 0.220 astronomical units and completes an orbit once every 46.8 days. It is potentially habitable.

    Kepler-89e, also known as KOI-94e, is an exoplanet in the constellation of Cygnus. It orbits Kepler-89.

    Kepler-1625 is a 14th-magnitude solar-mass star located in the constellation of Cygnus approximately 8,000 light years away. Its mass is within 5% of that of the Sun, but its radius is approximately 70% larger reflecting its more evolved state. A candidate gas giant exoplanet was detected by the Kepler Mission around the star in 2015, which was later validated as a likely real planet to >99% confidence in 2016. In 2018, the Hunt for Exomoons with Kepler project reported that this exoplanet has evidence for a Neptune-sized exomoon around it, based on observations from NASA’s Kepler Mission. Subsequent observations by the larger Hubble Space Telescope provided compounding evidence for a Neptune-sized satellite, with an on-going debate about the reality of this exomoon candidate.

    Kepler-160 is a main-sequence star approximately the width of our Galactic arm away in the constellation Lyra, first studied in detail by the Kepler Mission, a NASA-led operation tasked with discovering terrestrial planets. The star, which is very similar to the Sun in mass and radius, has three confirmed planets and one unconfirmed planet orbiting it.

    <span class="mw-page-title-main">Kepler-560b</span> Extrasolar planet

    Kepler-560b, or more correctly Kepler-560 Bb, is a confirmed exoplanet orbiting the secondary star of the binary star system Kepler-560. It is only 287 light-years away. Though not listed in the Habitable Exoplanets Catalog, one study gives the planet an 85% chance of being in the habitable zone.

    <span class="mw-page-title-main">Kepler-1638</span> G-type star in the constellation Cygnus

    Kepler-1638 is a G-type main-sequence star located about 5,000 light years away in the constellation of Cygnus. One known exoplanet has been found orbiting the star: Kepler-1638b. This planet may be a potentially habitable super-Earth. As of January 2021, Kepler-1638 is the farthest star with a known potentially habitable exoplanet.

    Kepler-635 is an F7V star with an extrasolar planetary system discovered by the Kepler space telescope. The star was first thought to be variable, but later determined to be static.

    Kepler-167 is a K-type main-sequence star located about 1,119 light-years (343 pc) away from the Solar System in the constellation of Cygnus. The star has about 78% the mass and 75% the radius of the Sun, and a temperature of 4,884 K. It hosts a system of four known exoplanets. There is also a companion red dwarf star at a separation of about 700 AU, with an estimated orbital period of over 15,000 years.

    References

    1. 1 2 3 4 Rowe, Jason F.; et al. (2014). "Validation of Kepler's Multiple Planet Candidates. III. Light Curve Analysis and Announcement of Hundreds of New Multi-planet Systems". The Astrophysical Journal. 784 (1): 20. arXiv: 1402.6534 . Bibcode:2014ApJ...784...45R. doi:10.1088/0004-637X/784/1/45. S2CID   119118620. 45.
    2. Morton, Timothy D.; et al. (2016). "False Positive Probabilities for All Kepler objects of Interest: 1284 Newly Validated Planets and 428 Likely False Positives". The Astrophysical Journal. 822 (2): 86. arXiv: 1605.02825 . Bibcode:2016ApJ...822...86M. doi: 10.3847/0004-637X/822/2/86 . S2CID   20832201.