Discovery | |
---|---|
Discovered by | |
Discovery date | March 31, 2005 |
Designations | |
(136472) Makemake | |
Pronunciation | UK: /ˌmækiˈmæki/ , US: /ˌmɑːkiˈmɑːki/ or /ˌmɑːkeɪˈmɑːkeɪ/ [a] |
Named after | Makemake |
2005 FY9 | |
Adjectives | Makemakean [6] [7] |
Symbol | (mostly astrological) |
Orbital characteristics [8] | |
Epoch May 31, 2020 (JD 2458900.5) | |
Earliest precovery date | January 29, 1955 |
Aphelion | 52.756 AU (7.8922 Tm) |
Perihelion | 38.104 AU (5.7003 Tm) |
45.430 AU (6.7962 Tm) | |
Eccentricity | 0.16126 |
306.21 yr (111,845 d) | |
Average orbital speed | 4.419 km/s |
165.514° | |
Inclination | 28.9835° |
79.620° | |
17 November 2186 [9] | |
294.834° | |
Known satellites | 1 (S/2015 (136472) 1) |
Physical characteristics | |
Dimensions | |
| |
Flattening | 0.0098 [c] |
6.42×106 km2 [d] [11] | |
Volume | 1.53×109 km3 [d] [12] |
Mass | ≈ 3.1×1021 kg [13] |
Mean density | |
Equatorial surface gravity | < 0.57 m/s2 |
Equatorial escape velocity | < 0.91 km/s |
22.8266±0.0001 h [14] | |
Temperature |
|
B−V=0.83, V−R=0.5 [17] | |
17.0 (opposition) [18] [19] | |
Makemake [e] (minor-planet designation: 136472 Makemake) is a dwarf planet and the largest of what is known as the classical population of Kuiper belt objects, [b] with a diameter approximately that of Saturn's moon Iapetus, or 60% that of Pluto. [24] [25] It has one known satellite. [26] Its extremely low average temperature, about 40 K (−230 °C), means its surface is covered with methane, ethane, and possibly nitrogen ices. [21] Makemake shows signs of geothermal activity and thus may be capable of supporting active geology and harboring an active subsurface ocean. [27]
Makemake was discovered on March 31, 2005 by a team led by Michael E. Brown, and announced on July 29, 2005. It was initially known as 2005 FY9 and later given the minor-planet number 136472. In July 2008, it was named after Makemake, a creator god in the Rapa Nui mythology of Easter Island, under the expectation by the International Astronomical Union (IAU) that it would prove to be a dwarf planet. [25] [28] [29] [30]
Makemake was discovered on March 31, 2005, by a team at the Palomar Observatory, led by Michael E. Brown, [8] and was announced to the public on July 29, 2005. The team had planned to delay announcing their discoveries of the bright objects Makemake and Eris until further observations and calculations were complete, but announced them both on July 29 when the discovery of another large object they had been tracking, Haumea, was controversially announced on July 27 by a different team in Spain. [31]
The earliest known precovery observations of Makemake have been found in photographic plates of the Palomar Observatory's Digitized Sky Survey from January 29, 1955 to May 1, 1998. [32]
Despite its relative brightness (a fifth as bright as Pluto), [f] Makemake was not discovered until after many much fainter Kuiper belt objects. Most searches for minor planets are conducted relatively close to the ecliptic (the region of the sky that the Sun, Moon, and planets appear to lie in, as seen from Earth), due to the greater likelihood of finding objects there. It probably escaped detection during the earlier surveys due to its relatively high orbital inclination, and the fact that it was at its farthest distance from the ecliptic at the time of its discovery, in the northern constellation of Coma Berenices. [19]
Makemake is the brightest trans-Neptunian object after Pluto, [34] with an apparent magnitude of 16.2 in late 1930, [35] it is theoretically bright enough to have been discovered by Clyde Tombaugh, whose search for trans-Neptunian objects was sensitive to objects up to magnitude 17. Indeed, in 1934 Tombaugh reported that there were no other planets out to a magnitude of 16.5 and an inclination of 17 degrees, or of greater inclination but within 50 degrees of either node. [36] And Makemake was there: At the time of Tombaugh's survey (1930–1943), Makemake varied from 5.5 to 13.2 degrees from the ecliptic, [35] moving across Auriga, starting near the northwest corner of Taurus and cutting across a corner of Gemini. [g] The starting position, however, was very close to the galactic anticenter, and Makemake would have been almost impossible to find against the dense background of stars.[ dubious – discuss ] Tombaugh continued searching for thirteen years after his discovery of Pluto (and Makemake, though growing dimmer, was still magnitude 16.6 in early 1943, the last year of his search), [35] but by then he was searching higher latitudes and did not find any more objects orbiting beyond Neptune. [37]
The provisional designation 2005 FY9 was given to Makemake when the discovery was made public. Before that, the discovery team used the codename "Easterbunny" for the object, because of its discovery shortly after Easter. [1]
In July 2008, in accordance with IAU rules for classical Kuiper belt objects, 2005 FY9 was given the name of a creator deity. [38] The name of Makemake, the creator of humanity and god of fertility in the myths of the Rapa Nui, the native people of Easter Island, [29] was chosen in part to preserve the object's connection with Easter. [1]
Planetary symbols are no longer much used in astronomy. A Makemake symbol ⟨ ⟩ is included in Unicode as U+1F77C: [39] it is mostly used by astrologers, [40] but has also been used by NASA. [41] The symbol was designed by Denis Moskowitz and John T. Whelan; it is a traditional petroglyph of Makemake's face stylized to resemble an 'M'. [42] The commercial Solar Fire astrology software uses an alternative symbol ( ), [40] a crossed variant of a symbol ( ) created by astrologer Henry Seltzer for his commercial software.
As of April 2019 [update] , Makemake was 52.5 AU (7.85 billion km) from the Sun, [18] [19] almost as far from the Sun as it ever reaches on its orbit. [21] Makemake follows an orbit very similar to that of Haumea: highly inclined at 29° and a moderate eccentricity of about 0.16. [43] But still, Makemake's orbit is slightly farther from the Sun in terms of both the semi-major axis and perihelion. Its orbital period is 306 years, [8] more than Pluto's 248 years and Haumea's 283 years. Both Makemake and Haumea are currently far from the ecliptic (at an angular distance of almost 29°). Makemake will reach its aphelion in 2033, [19] whereas Haumea passed its aphelion in early 1992. [44]
Makemake is a classical Kuiper belt object (KBO), [5] [b] which means its orbit lies far enough from Neptune to remain stable over the age of the Solar System. [45] [46] Unlike plutinos, which can cross Neptune's orbit due to their 2:3 resonance with the planet, the classical objects have perihelia further from the Sun, free from Neptune's perturbation. [45] Such objects have relatively low eccentricities (e below 0.2) and orbit the Sun in much the same way the planets do. Makemake, however, is a member of the "dynamically hot" class of classical KBOs, meaning that it has a high inclination compared to others in its population. [47] Makemake is, probably coincidentally, near the 13:7 resonance with Neptune. [48]
Makemake is currently visually the second-brightest Kuiper belt object after Pluto, [34] having a March opposition apparent magnitude of 17.0 [18] it will pass from its present constellation Coma Berenices to Boötes in November 2028. [19] It is bright enough to be visible using a high-end amateur telescope.
Combining the detection in infrared by the Spitzer Space Telescope and Herschel Space Telescope with the similarities of Pluto's spectrum yielded an estimated diameter from 1,360 to 1,480 km. [24] From the 2011 stellar occultation by Makemake, its dimensions had initially been measured at (1,502 ± 45) × (1,430 ± 9) km. However, the occultation data was later reanalyzed, [10] leading to an estimate of (1434+48
−18) × (1420+18
−24 km) without a pole-orientation constraint. [10] Makemake was the fourth dwarf planet recognized, because it has a bright V-band absolute magnitude of 0.05. [14] Makemake has a highly reflective surface with a geometrical albedo of 0.82±0.02. [14]
The rotation period of Makemake is estimated at 22.83 hours. [14] A rotation period of 7.77 hours published in 2009 [49] later turned out to be an alias of the actual rotation period. The possibility of this had been mentioned in the 2009 study, and the data from that study agrees well with the 22.83-hour period. [14] This rotation period is relatively long for a dwarf planet. Part of this may be due to tidal acceleration from Makemake's satellite. It has been suggested that a second large, undiscovered satellite might better explain the dwarf planet's unusually long rotation. [14]
Makemake's lightcurve amplitude is small, only 0.03 mag. [10] [14] This was thought to be due to Makemake currently being viewed pole on from Earth; however, S/2015 (136472) 1's orbital plane (which is probably orbiting with little inclination relative to Makemake's equator due to tidal effects) is edge-on from Earth, implying that Makemake is being viewed equator-on. [50]
Like Pluto, Makemake appears red in the visible spectrum, and significantly redder than the surface of Eris (see colour comparison of TNOs). [51] The near-infrared spectrum is marked by the presence of the broad methane (CH4) absorption bands. Methane is observed also on Pluto and Eris, but its spectral signature is much weaker. [51]
Spectral analysis of Makemake's surface revealed that methane must be present in the form of large grains at least one centimetre in size. [21] Large amounts of ethane and tholins, as well as smaller amounts of ethylene, acetylene, and high-mass alkanes (like propane), may be present, most likely created by photolysis of methane by solar radiation. [21] [52] The tholins are probably responsible for the red color of the visible spectrum. Although evidence exists for the presence of nitrogen ice on its surface, at least mixed with other ices, there is nowhere near the same level of nitrogen as on Pluto and Triton, where it composes more than 98 percent of the crust. The relative lack of nitrogen ice suggests that its supply of nitrogen has somehow been depleted over the age of the Solar System. [21] [53] [54]
The far-infrared (24–70 μm) and submillimeter (70–500 μm) photometry performed by Spitzer and Herschel telescopes revealed that the surface of Makemake is not homogeneous. Although the majority of it is covered by nitrogen and methane ices, where the albedo ranges from 78 to 90%, there are small patches of dark terrain whose albedo is only 2 to 12%, and that make up 3 to 7% of the surface. [24] These studies were made before S/2015 (136472) 1 was discovered; thus, these small dark patches may have instead been the dark surface of the satellite rather than any actual surface features on Makemake. [55]
However, some experiments have refuted these studies. Spectroscopic studies, collected from 2005 to 2008 using the William Herschel Telescope (La Palma, Spain) were analyzed together with other spectra in the literature, as of 2014. They show some degree of variation in the spectral slope, which would be associated with different abundance of the complex organic materials, byproducts of the irradiation of the ices present on the surface of Makemake. However, the relative ratio of the two dominant icy species, methane, and nitrogen, remains quite stable on the surface revealing a low degree of inhomogeneity in the ice component. [56] These results were recently confirmed when the Telescopio Nazionale Galileo acquired new visible and near infra-red spectra for Makemake, between 2006 and 2013, that covered nearly 80% of its surface; this study found that the variations in the spectra were negligible, suggesting that Makemake's surface may indeed be homogenous. [57] Based on optical observations conducted between 2006 and 2017, Hromakina et al. concluded that Makemake's lightcurve was likely due to heterogeneities across its surface, but that the variations (of the order of 3%) were too small to have been detected spectroscopically. [14]
More research shows that Eris, Pluto and Makemake show signs of noticeable geothermal activity and could likely harbor active subsurface oceans. Rebuking the earlier speculations about distant celestial objects being uninhabitable. [27]
Makemake was expected to have an atmosphere similar to that of Pluto but with a lower surface pressure. However, on 23 April 2011, Makemake passed in front of an 18th-magnitude star and abruptly blocked its light. [58] The results showed that Makemake presently lacks a substantial atmosphere and placed an upper limit of 0.4–1.2 millipascals on the pressure at its surface. [16]
The presence of methane and possibly nitrogen suggests that Makemake could have a transient atmosphere similar to that of Pluto near its perihelion. [51] Nitrogen, if present, will be the dominant component of it. [21] The existence of an atmosphere also provides a natural explanation for the nitrogen depletion: because the gravity of Makemake is weaker than that of Pluto, Eris and Triton, a large amount of nitrogen was probably lost via atmospheric escape; methane is lighter than nitrogen, but has significantly lower vapor pressure at temperatures prevalent at the surface of Makemake (32–36 K), [16] which hinders its escape; the result of this process is a higher relative abundance of methane. [59] However, studies of Pluto's atmosphere by New Horizons suggest that methane, not nitrogen, is the dominant escaping gas, suggesting that the reasons for Makemake's absence of nitrogen may be more complicated. [60] [61]
Makemake has a single discovered moon, S/2015 (136472) 1 and nicknamed MK2. It was seen 21,000 km (13,000 mi) from the dwarf planet, and its diameter is estimated at 175 km (110 mi) (for an assumed albedo of 4%). [7]
Name | Diameter (km) | Discovery Date |
---|---|---|
Makemake | ≈ 1430 | March 31, 2005 |
S/2015 (136472) 1 | ≈ 175 | April 27, 2015 |
Makemake was observed from afar by the New Horizons spacecraft in October 2007 and January 2017, from distances of 52 AU and 70 AU, respectively. [15] The spacecraft's outbound trajectory permitted observations of Makemake at high phase angles that are otherwise unobtainable from Earth, enabling the determination of the light scattering properties and phase curve behavior of Makemake's surface. [15]
It has been calculated that a flyby mission to Makemake could take just over 16 years using a Jupiter gravity assist, based on a launch date of 24 August 2036. Makemake would be approximately 52 AU from the Sun when the spacecraft arrives. [62]
A classical Kuiper belt object, also called a cubewano ( "QB1-o"), is a low-eccentricity Kuiper belt object (KBO) that orbits beyond Neptune and is not controlled by an orbital resonance with Neptune. Cubewanos have orbits with semi-major axes in the 40–50 AU range and, unlike Pluto, do not cross Neptune's orbit. That is, they have low-eccentricity and sometimes low-inclination orbits like the classical planets.
The Kuiper belt is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times as wide and 20–200 times as massive. Like the asteroid belt, it consists mainly of small bodies or remnants from when the Solar System formed. While many asteroids are composed primarily of rock and metal, most Kuiper belt objects are composed largely of frozen volatiles, such as methane, ammonia, and water. The Kuiper belt is home to most of the objects that astronomers generally accept as dwarf planets: Orcus, Pluto, Haumea, Quaoar, and Makemake. Some of the Solar System's moons, such as Neptune's Triton and Saturn's Phoebe, may have originated in the region.
A trans-Neptunian object (TNO), also written transneptunian object, is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune, which has an orbital semi-major axis of 30.1 astronomical units (AU).
Pluto is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest known trans-Neptunian object by volume, by a small margin, but is less massive than Eris. Like other Kuiper belt objects, Pluto is made primarily of ice and rock and is much smaller than the inner planets. Pluto has roughly one-sixth the mass of the Moon, and one-third its volume.
28978 Ixion (, provisional designation 2001 KX76) is a large trans-Neptunian object and a possible dwarf planet. It is located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Ixion is classified as a plutino, a dynamical class of objects in a 2:3 orbital resonance with Neptune. It was discovered in May 2001 by astronomers of the Deep Ecliptic Survey at the Cerro Tololo Inter-American Observatory, and was announced in July 2001. The object is named after the Greek mythological figure Ixion, who was a king of the Lapiths.
20000 Varuna (provisional designation 2000 WR106) is a large trans-Neptunian object in the Kuiper belt. It was discovered in November 2000 by American astronomer Robert McMillan during a Spacewatch survey at the Kitt Peak National Observatory. It is named after the Hindu deity Varuna, one of the oldest deities mentioned in the Vedic texts.
Tholins are a wide variety of organic compounds formed by solar ultraviolet or cosmic ray irradiation of simple carbon-containing compounds such as carbon dioxide, methane or ethane, often in combination with nitrogen or water. Tholins are disordered polymer-like materials made of repeating chains of linked subunits and complex combinations of functional groups, typically nitriles and hydrocarbons, and their degraded forms such as amines and phenyls. Tholins do not form naturally on modern-day Earth, but they are found in great abundance on the surfaces of icy bodies in the outer Solar System, and as reddish aerosols in the atmospheres of outer Solar System planets and moons.
Orcus is a dwarf planet located in the Kuiper belt, with one large moon, Vanth. It has an estimated diameter of 870 to 960 km, comparable to the Inner Solar System dwarf planet Ceres. The surface of Orcus is relatively bright with albedo reaching 23 percent, neutral in color, and rich in water ice. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds like methane or ammonia may also be present on its surface. Orcus was discovered by American astronomers Michael Brown, Chad Trujillo, and David Rabinowitz on 17 February 2004.
Sedna is a dwarf planet in the outermost reaches of the Solar System, orbiting the Sun beyond the orbit of Neptune. Discovered in 2003, the planetoid's surface is one of the reddest known among Solar System bodies. Spectroscopy has revealed Sedna's surface to be mostly a mixture of the solid ices of water, methane, and nitrogen, along with widespread deposits of reddish-colored tholins, a chemical makeup similar to those of some other trans-Neptunian objects. Within the range of uncertainties, it is tied with the dwarf planet Ceres in the asteroid belt as the largest dwarf planet not known to have a moon. Its diameter is roughly 1,000 km. Owing to its lack of known moons, the Keplerian laws of planetary motion cannot be employed for determining its mass, and the precise figure remains as yet unknown.
Chadwick A. Trujillo is an American astronomer, discoverer of minor planets and the co-discoverer of Eris, the most massive dwarf planet known in the Solar System.
Haumea is a dwarf planet located beyond Neptune's orbit. It was discovered in 2004 by a team headed by Mike Brown of Caltech at the Palomar Observatory, and formally announced in 2005 by a team headed by José Luis Ortiz Moreno at the Sierra Nevada Observatory in Spain, who had discovered it that year in precovery images taken by the team in 2003. From that announcement, it received the provisional designation 2003 EL61.
A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be gravitationally rounded, but insufficient to achieve orbital dominance like the eight classical planets of the Solar System. The prototypical dwarf planet is Pluto, which for decades was regarded as a planet before the "dwarf" concept was adopted in 2006.
Eris is the most massive and second-largest known dwarf planet in the Solar System. It is a trans-Neptunian object (TNO) in the scattered disk and has a high-eccentricity orbit. Eris was discovered in January 2005 by a Palomar Observatory–based team led by Mike Brown and verified later that year. It was named in September 2006 after the Greco–Roman goddess of strife and discord. Eris is the ninth-most massive known object orbiting the Sun and the sixteenth-most massive overall in the Solar System. It is also the largest known object in the solar system that has not been visited by a spacecraft. Eris has been measured at 2,326 ± 12 kilometres (1,445 ± 7 mi) in diameter; its mass is 0.28% that of the Earth and 27% greater than that of Pluto, although Pluto is slightly larger by volume. Both Eris and Pluto have a surface area that is comparable to that of Russia or South America.
(24835) 1995 SM55 (provisional designation 1995 SM55) is a trans-Neptunian object and member of the Haumea family that resides in the Kuiper belt, located in the outermost region of the Solar System. It was discovered on 19 September 1995, by American astronomer Nichole Danzl of the Spacewatch program at Kitt Peak National Observatory near Tucson, Arizona, in the United States. It measures approximately 200 kilometers in diameter and was the second-brightest known object in the Kuiper belt, after Pluto, until 1996 TO66 was discovered.
The dwarf planet Haumea has two known moons, Hiʻiaka and Namaka, named after Hawaiian goddesses. These small moons were discovered in 2005, from observations of Haumea made at the large telescopes of the W. M. Keck Observatory in Hawaii.
The Haumea or Haumean family is the only identified trans-Neptunian collisional family; that is, the only group of trans-Neptunian objects (TNOs) with similar orbital parameters and spectra that suggest they originated in the disruptive impact of a progenitor body. Calculations indicate that it is probably the only trans-Neptunian collisional family. Members are known as Haumeids.
Gonggong is a dwarf planet and a member of the scattered disc beyond Neptune. It has a highly eccentric and inclined orbit during which it ranges from 34–101 astronomical units from the Sun. As of 2019, its distance from the Sun is 88 AU, and it is the sixth-farthest known Solar System object. According to the Deep Ecliptic Survey, Gonggong is in a 3:10 orbital resonance with Neptune, in which it completes three orbits around the Sun for every ten orbits completed by Neptune. Gonggong was discovered in July 2007 by American astronomers Megan Schwamb, Michael Brown, and David Rabinowitz at the Palomar Observatory, and the discovery was announced in January 2009.
Quaoar is a large, ringed dwarf planet in the Kuiper belt, a region of icy planetesimals beyond Neptune. It has an elongated ellipsoidal shape with an average diameter of 1,090 km (680 mi), about half the size of the dwarf planet Pluto. The object was discovered by American astronomers Chad Trujillo and Michael Brown at the Palomar Observatory on 4 June 2002. Quaoar's surface contains crystalline water ice and ammonia hydrate, which suggests that it might have experienced cryovolcanism. A small amount of methane is present on its surface, which can only be retained by the largest Kuiper belt objects.