|
In astronomy, the plutinos are a dynamical group of trans-Neptunian objects that orbit in 2:3 mean-motion resonance with Neptune. This means that for every two orbits a plutino makes, Neptune orbits three times. The dwarf planet Pluto is the largest member as well as the namesake of this group. The next largest members are Orcus, (208996) 2003 AZ84 , and Ixion. Plutinos are named after mythological creatures associated with the underworld.
Plutinos form the inner part of the Kuiper belt and represent about a quarter of the known Kuiper belt objects. They are also the most populous known class of resonant trans-Neptunian objects (also see adjunct box with hierarchical listing). The first plutino after Pluto itself, (385185) 1993 RO, was discovered on September 16, 1993.
It is thought that the objects that are currently in mean orbital resonances with Neptune initially followed a variety of independent heliocentric paths. As Neptune migrated outward early in the Solar System's history (see origins of the Kuiper belt), the bodies it approached would have been scattered; during this process, some of them would have been captured into resonances. [1] The 3:2 resonance is a low-order resonance and is thus the strongest and most stable among all resonances. [2] This is the primary reason it has a larger population than the other Neptunian resonances encountered in the Kuiper Belt. The cloud of low-inclination bodies beyond 40 AU is the cubewano family, while bodies with higher eccentricities (0.05 to 0.34) and semimajor axes close to the 3:2 Neptune resonance are primarily plutinos. [3]
While the majority of plutinos have relatively low orbital inclinations, a significant fraction of these objects follow orbits similar to that of Pluto, with inclinations in the 10–25° range and eccentricities around 0.2–0.25; such orbits result in many of these objects having perihelia close to or even inside Neptune's orbit, while simultaneously having aphelia that bring them close to the main Kuiper belt's outer edge (where objects in a 1:2 resonance with Neptune, the Twotinos, are found).
The orbital periods of plutinos cluster around 247.3 years (1.5 × Neptune's orbital period), varying by at most a few years from this value.
Unusual plutinos include:
See also the comparison with the distribution of the cubewanos.
Pluto's influence on the other plutinos has historically been neglected due to its relatively small mass. However, the resonance width (the range of semi-axes compatible with the resonance) is very narrow and only a few times larger than Pluto's Hill sphere (gravitational influence). Consequently, depending on the original eccentricity, some plutinos will eventually be driven out of the resonance by interactions with Pluto. [5] Numerical simulations suggest that the orbits of plutinos with an eccentricity 10%–30% smaller or larger than that of Pluto are not stable over Ga timescales. [6]
The plutinos brighter than HV=6 include:
Object | a (AU) | q (AU) | i (°) | H | Diameter (km) | Mass (1020 kg) | Albedo | V−R | Discovery year | Discoverer | Refs |
---|---|---|---|---|---|---|---|---|---|---|---|
134340 Pluto | 39.3 | 29.7 | 17.1 | −0.7 | 2322 | 130 | 0.49–0.66 | 1930 | Clyde Tombaugh | JPL | |
90482 Orcus | 39.2 | 30.3 | 20.6 | 2.31±0.03 | 917±25 | 6.32±0.05 | 0.28±0.06 | 0.37 | 2004 | M. Brown, C. Trujillo, D. Rabinowitz | JPL |
(208996) 2003 AZ84 | 39.4 | 32.3 | 13.6 | 3.74±0.08 | 727.0+61.9 −66.5 | ≈ 3 | 0.107+0.023 −0.016 | 0.38±0.04 | 2003 | M. Brown, C. Trujillo | JPL |
28978 Ixion | 39.7 | 30.1 | 19.6 | 3.828±0.039 | 617+19 −20 | ≈ 3 | 0.141±0.011 | 0.61 | 2001 | Deep Ecliptic Survey | JPL |
(678191) 2017 OF69 | 39.5 | 31.3 | 13.6 | 4.091±0.12 | ≈ 380–680 | ? | ? | ? | 2017 | D. J. Tholen, S. S. Sheppard, C. Trujillo | JPL |
(84922) 2003 VS2 | 39.3 | 36.4 | 14.8 | 4.1±0.38 | 523.0+35.1 −34.4 | ≈ 1.5 | 0.147+0.063 −0.043 | 0.59±0.02 | 2003 | NEAT | JPL |
(455502) 2003 UZ413 | 39.2 | 30.4 | 12.0 | 4.38±0.05 | ≈ 600 | ≈ 2 | ? | 0.46±0.06 | 2001 | M. Brown, C. Trujillo, D. Rabinowitz | JPL |
(556068) 2014 JR80 | 39.5 | 36.0 | 15.4 | 4.9 | ≈ 240–670 | ? | ? | ? | 2014 | Pan-STARRS | JPL |
(578993) 2014 JP80 | 39.5 | 36.7 | 19.4 | 4.9 | ≈ 240–670 | ? | ? | ? | 2014 | Pan-STARRS | JPL |
38628 Huya | 39.4 | 28.5 | 15.5 | 5.04±0.03 | 406±16 | ≈ 0.5 | 0.083±0.004 | 0.57±0.09 | 2000 | Ignacio Ferrin | JPL |
(469987) 2006 HJ123 | 39.3 | 27.4 | 12.0 | 5.32±0.66 | 283.1+142.3 −110.8 | ≈ 0.012 | 0.136+0.308 −0.089 | 2006 | Marc W. Buie | JPL | |
(612533) 2002 XV93 | 39.3 | 34.5 | 13.3 | 5.42±0.46 | 549.2+21.7 −23.0 | ≈ 1.7 | 0.040+0.020 −0.015 | 0.37±0.02 | 2001 | M.W.Buie | JPL |
(469372) 2001 QF298 | 39.3 | 34.9 | 22.4 | 5.43±0.07 | 408.2+40.2 −44.9 | ≈ 0.7 | 0.071+0.020 −0.014 | 0.39±0.06 | 2001 | Marc W. Buie | JPL |
47171 Lempo | 39.3 | 30.6 | 8.4 | 5.41±0.10 | 393.1+25.2 −26.8 (triple) | 0.1275±0.0006 | 0.079+0.013 −0.011 | 0.70±0.03 | 1999 | E. P. Rubenstein, L.-G. Strolger | JPL |
(307463) 2002 VU130 | 39.3 | 31.2 | 14.0 | 5.47±0.83 | 252.9+33.6 −31.3 | ≈ 0.16 | 0.179+0.202 −0.103 | 2002 | Marc W. Buie | JPL | |
(84719) 2002 VR128 | 39.3 | 28.9 | 14.0 | 5.58±0.37 | 448.5+42.1 −43.2 | ≈ 1 | 0.052+0.027 −0.018 | 0.60±0.02 | 2002 | NEAT | JPL |
(55638) 2002 VE95 | 39.4 | 30.4 | 16.3 | 5.70±0.06 | 249.8+13.5 −13.1 | ≈ 0.15 | 0.149+0.019 −0.016 | 0.72±0.05 | 2002 | NEAT | JPL |
(link to all of the orbits of these objects listed above are here)
A classical Kuiper belt object, also called a cubewano ( "QB1-o"), is a low-eccentricity Kuiper belt object (KBO) that orbits beyond Neptune and is not controlled by an orbital resonance with Neptune. Cubewanos have orbits with semi-major axes in the 40–50 AU range and, unlike Pluto, do not cross Neptune's orbit. That is, they have low-eccentricity and sometimes low-inclination orbits like the classical planets.
The Kuiper belt is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times as wide and 20–200 times as massive. Like the asteroid belt, it consists mainly of small bodies or remnants from when the Solar System formed. While many asteroids are composed primarily of rock and metal, most Kuiper belt objects are composed largely of frozen volatiles, such as methane, ammonia, and water. The Kuiper belt is home to most of the objects that astronomers generally accept as dwarf planets: Orcus, Pluto, Haumea, Quaoar, and Makemake. Some of the Solar System's moons, such as Neptune's Triton and Saturn's Phoebe, may have originated in the region.
A trans-Neptunian object (TNO), also written transneptunian object, is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune, which has an orbital semi-major axis of 30.1 astronomical units (au).
In planetary astronomy, a centaur is a small Solar System body that orbits the Sun between Jupiter and Neptune and crosses the orbits of one or more of the giant planets. Centaurs generally have unstable orbits because they cross or have crossed the orbits of the giant planets; almost all their orbits have dynamic lifetimes of only a few million years, but there is one known centaur, 514107 Kaʻepaokaʻawela, which may be in a stable orbit. Centaurs typically exhibit the characteristics of both asteroids and comets. They are named after the mythological centaurs that were a mixture of horse and human. Observational bias toward large objects makes determination of the total centaur population difficult. Estimates for the number of centaurs in the Solar System more than 1 km in diameter range from as low as 44,000 to more than 10,000,000.
28978 Ixion (, provisional designation 2001 KX76) is a large trans-Neptunian object and a possible dwarf planet. It is located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Ixion is classified as a plutino, a dynamical class of objects in a 2:3 orbital resonance with Neptune. It was discovered in May 2001 by astronomers of the Deep Ecliptic Survey at the Cerro Tololo Inter-American Observatory, and was announced in July 2001. The object is named after the Greek mythological figure Ixion, who was a king of the Lapiths.
Orcus is a dwarf planet located in the Kuiper belt, with one large moon, Vanth. It has an estimated diameter of 870 to 960 km, comparable to the Inner Solar System dwarf planet Ceres. The surface of Orcus is relatively bright with albedo reaching 23 percent, neutral in color, and rich in water ice. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds like methane or ammonia may also be present on its surface. Orcus was discovered by American astronomers Michael Brown, Chad Trujillo, and David Rabinowitz on 17 February 2004.
In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune. The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, 2:3, etc. Resonant TNOs can be either part of the main Kuiper belt population, or the more distant scattered disc population.
The scattered disc (or scattered disk) is a distant circumstellar disc in the Solar System that is sparsely populated by icy small Solar System bodies, which are a subset of the broader family of trans-Neptunian objects. The scattered-disc objects (SDOs) have orbital eccentricities ranging as high as 0.8, inclinations as high as 40°, and perihelia greater than 30 astronomical units (4.5×109 km; 2.8×109 mi). These extreme orbits are thought to be the result of gravitational "scattering" by the gas giants, and the objects continue to be subject to perturbation by the planet Neptune.
(208996) 2003 AZ84 (provisional designation 2003 AZ84) is a trans-Neptunian object with a possible moon located in the outer regions of the Solar System. It is approximately 940 kilometers across its longest axis, as it has an elongated shape. It belongs to the plutinos – a group of minor planets named after its largest member Pluto – as it orbits in a 2:3 resonance with Neptune in the Kuiper belt. It is the third-largest known plutino, after Pluto and Orcus. It was discovered on 13 January 2003, by American astronomers Chad Trujillo and Michael Brown during the NEAT survey using the Samuel Oschin telescope at Palomar Observatory.
(15875) 1996 TP66 (provisional designation 1996 TP66) is a resonant trans-Neptunian object of the plutino population, located in the outermost region of the Solar System, approximately 154 kilometers (96 miles) in diameter. It was discovered on 11 October 1996, by astronomers Jane Luu, David C. Jewitt and Chad Trujillo at the Mauna Kea Observatories, Hawaii, in the United States. The very reddish RR-type with a highly eccentric orbit has been near its perihelion around the time of its discovery. This minor planet was numbered in 2000 and has since not been named. It is probably not a dwarf planet candidate.
(118228) 1996 TQ66 (provisional designation 1996 TQ66) is a resonant trans-Neptunian object of the plutino population in the Kuiper belt, located in the outermost region of the Solar System. It was discovered on 8 October 1996, by American astronomers Jun Chen, David Jewitt, Chad Trujillo, and Jane Luu, using the UH88 telescope at the Mauna Kea Observatories, Hawaii. The very red object measures approximately 185 kilometers (110 miles) in diameter. As of 2021, it has not been named.
(79983) 1999 DF9 (provisional designation 1999 DF9) is a trans-Neptunian object of the Kuiper belt, classified as a non-resonant cubewano, that measures approximately 270 kilometers in diameter.
(35671) 1998 SN165 (provisional designation 1998 SN165) is a trans-Neptunian object from the Kuiper belt located in the outermost region of the Solar System. It was discovered on 23 September 1998, by American astronomer Arianna Gleason at the Kitt Peak National Observatory near Tucson, Arizona. The cold classical Kuiper belt object is a dwarf planet candidate, as it measures approximately 400 kilometers (250 miles) in diameter. It has a grey-blue color (BB) and a rotation period of 8.8 hours. As of 2021, it has not been named.
(55638) 2002 VE95 (provisional designation 2002 VE95) is a trans-Neptunian object from the outermost region of the Solar System. It was discovered on 14 November 2002, by astronomers with the Near-Earth Asteroid Tracking program at the Palomar Observatory in California, United States. This resonant trans-Neptunian object is a member of the plutino population, locked in a 2:3 resonance with Neptune. The object is likely of primordial origin with a heterogeneous surface and a notably reddish color (RR) attributed to the presence of methanol and tholins. It has a poorly defined rotation period of 6.8 hours and measures approximately 250 kilometers (160 miles) in diameter, too small to be a dwarf planet candidate. As of 2021, it has not yet been named.
The jumping-Jupiter scenario specifies an evolution of giant-planet migration described by the Nice model, in which an ice giant is scattered inward by Saturn and outward by Jupiter, causing their semi-major axes to jump, and thereby quickly separating their orbits. The jumping-Jupiter scenario was proposed by Ramon Brasser, Alessandro Morbidelli, Rodney Gomes, Kleomenis Tsiganis, and Harold Levison after their studies revealed that the smooth divergent migration of Jupiter and Saturn resulted in an inner Solar System significantly different from the current Solar System. During this migration secular resonances swept through the inner Solar System exciting the orbits of the terrestrial planets and the asteroids, leaving the planets' orbits too eccentric, and the asteroid belt with too many high-inclination objects. The jumps in the semi-major axes of Jupiter and Saturn described in the jumping-Jupiter scenario can allow these resonances to quickly cross the inner Solar System without altering orbits excessively, although the terrestrial planets remain sensitive to its passage.
2015 KQ174 is a trans-Neptunian object, both considered a scattered and detached object, located in the outermost region of the Solar System. The object with a moderately inclined and eccentric orbit measures approximately 154 kilometers (96 miles) in diameter. It was first observed on 24 May 2015, by astronomers at the Mauna Kea Observatories in Hawaii, United States.
2013 FQ28 is a trans-Neptunian object, both considered a scattered and detached object, located in the outermost region of the Solar System. It was first observed on 17 March 2013, by a team of astronomers at the Cerro Tololo Inter-American Observatory in Chile. It orbits the Sun in a moderate inclined, moderate-eccentricity orbit. The weak dwarf planet candidate measures approximately 260 kilometers (160 miles) in diameter.
The hypothetical Planet Nine would modify the orbits of extreme trans-Neptunian objects via a combination of effects. On very long timescales exchanges of angular momentum with Planet Nine cause the perihelia of anti-aligned objects to rise until their precession reverses direction, maintaining their anti-alignment, and later fall, returning them to their original orbits. On shorter timescales mean-motion resonances with Planet Nine provides phase protection, which stabilizes their orbits by slightly altering the objects' semi-major axes, keeping their orbits synchronized with Planet Nine's and preventing close approaches. The inclination of Planet Nine's orbit weakens this protection, resulting in a chaotic variation of semi-major axes as objects hop between resonances. The orbital poles of the objects circle that of the Solar System's Laplace plane, which at large semi-major axes is warped toward the plane of Planet Nine's orbit, causing their poles to be clustered toward one side.