Clearing the neighbourhood

Last updated

"Clearing the neighbourhood" around a celestial body's orbit describes the body becoming gravitationally dominant such that there are no other bodies of comparable size other than its natural satellites or those otherwise under its gravitational influence.

Contents

"Clearing the neighbourhood" is one of three necessary criteria for a celestial body to be considered a planet in the Solar System, according to the definition adopted in 2006 by the International Astronomical Union (IAU). [1] In 2015, a proposal was made to extend the definition to exoplanets. [2]

In the end stages of planet formation, a planet, as so defined, will have "cleared the neighbourhood" of its own orbital zone, i.e. removed other bodies of comparable size. A large body that meets the other criteria for a planet but has not cleared its neighbourhood is classified as a dwarf planet. This includes Pluto, whose orbit intersects with Neptune's orbit and shares its orbital neighbourhood with many Kuiper belt objects. The IAU's definition does not attach specific numbers or equations to this term, but all IAU-recognised planets have cleared their neighbourhoods to a much greater extent (by orders of magnitude) than any dwarf planet or candidate for dwarf planet.

The phrase stems from a paper presented to the 2000 IAU general assembly by the planetary scientists Alan Stern and Harold F. Levison. The authors used several similar phrases as they developed a theoretical basis for determining if an object orbiting a star is likely to "clear its neighboring region" of planetesimals based on the object's mass and its orbital period. [3] Steven Soter prefers to use the term "dynamical dominance", [4] and Jean-Luc Margot notes that such language "seems less prone to misinterpretation". [2]

Prior to 2006, the IAU had no specific rules for naming planets, as no new planets had been discovered for decades, whereas there were well-established rules for naming an abundance of newly discovered small bodies such as asteroids or comets. The naming process for Eris stalled after the announcement of its discovery in 2005, because its size was comparable to that of Pluto. The IAU sought to resolve the naming of Eris by seeking a taxonomical definition to distinguish planets from minor planets.

Criteria

The phrase refers to an orbiting body (a planet or protoplanet) "sweeping out" its orbital region over time, by gravitationally interacting with smaller bodies nearby. Over many orbital cycles, a large body will tend to cause small bodies either to accrete with it, or to be disturbed to another orbit, or to be captured either as a satellite or into a resonant orbit. As a consequence it does not then share its orbital region with other bodies of significant size, except for its own satellites, or other bodies governed by its own gravitational influence. This latter restriction excludes objects whose orbits may cross but that will never collide with each other due to orbital resonance, such as Jupiter and its trojans, Earth and 3753 Cruithne, or Neptune and the plutinos. [3] As to the extent of orbit clearing required, Jean-Luc Margot emphasises "a planet can never completely clear its orbital zone, because gravitational and radiative forces continually perturb the orbits of asteroids and comets into planet-crossing orbits" and states that the IAU did not intend the impossible standard of impeccable orbit clearing. [2]

Stern–Levison's Λ

In their paper, Stern and Levison sought an algorithm to determine which "planetary bodies control the region surrounding them". [3] They defined Λ (lambda), a measure of a body's ability to scatter smaller masses out of its orbital region over a period of time equal to the age of the Universe (Hubble time). Λ is a dimensionless number defined as

where m is the mass of the body, a is the body's semi-major axis, and k is a function of the orbital elements of the small body being scattered and the degree to which it must be scattered. In the domain of the solar planetary disc, there is little variation in the average values of k for small bodies at a particular distance from the Sun. [4]

If Λ > 1, then the body will likely clear out the small bodies in its orbital zone. Stern and Levison used this discriminant to separate the gravitionally rounded, Sun-orbiting bodies into überplanets, which are "dynamically important enough to have cleared its neighboring planetesimals", and unterplanets. The überplanets are the eight most massive solar orbiters (i.e. the IAU planets), and the unterplanets are the rest (i.e. the IAU dwarf planets).

Soter's µ

Steven Soter proposed an observationally based measure µ (mu), which he called the "planetary discriminant", to separate bodies orbiting stars into planets and non-planets. [4] He defines mu as

where µ is a dimensionless parameter, M is the mass of the candidate planet, and m is the mass of all other bodies that share an orbital zone, that is all bodies whose orbits cross a common radial distance from the primary, and whose non-resonant periods differ by less than an order of magnitude. [4]

The order-of-magnitude similarity in period requirement excludes comets from the calculation, but the combined mass of the comets turns out to be negligible compared to the other small Solar System bodies, so their inclusion would have little impact on the results. µ is then calculated by dividing the mass of the candidate body by the total mass of the other objects that share its orbital zone. It is a measure of the actual degree of cleanliness of the orbital zone. Soter proposed that if µ > 100, then the candidate body be regarded as a planet. [4]

Margot's Π

Astronomer Jean-Luc Margot has proposed a discriminant, Π (pi), that can categorise a body based only on its own mass, its semi-major axis, and its star's mass. [2] Like Stern–Levison's Λ, Π is a measure of the ability of the body to clear its orbit, but unlike Λ, it is solely based on theory and does not use empirical data from the Solar System. Π is based on properties that are feasibly determinable even for exoplanetary bodies, unlike Soter's µ, which requires an accurate census of the orbital zone.

where m is the mass of the candidate body in Earth masses, a is its semi-major axis in AU, M is the mass of the parent star in solar masses, and k is a constant chosen so that Π > 1 for a body that can clear its orbital zone. k depends on the extent of clearing desired and the time required to do so. Margot selected an extent of times the Hill radius and a time limit of the parent star's lifetime on the main sequence (which is a function of the mass of the star). Then, in the mentioned units and a main-sequence lifetime of 10 billion years, k = 807. [lower-alpha 1] The body is a planet if Π > 1. The minimum mass necessary to clear the given orbit is given when Π = 1.

Π is based on a calculation of the number of orbits required for the candidate body to impart enough energy to a small body in a nearby orbit such that the smaller body is cleared out of the desired orbital extent. This is unlike Λ, which uses an average of the clearing times required for a sample of asteroids in the asteroid belt, and is thus biased to that region of the Solar System. Π's use of the main-sequence lifetime means that the body will eventually clear an orbit around the star; Λ's use of a Hubble time means that the star might disrupt its planetary system (e.g. by going nova) before the object is actually able to clear its orbit.

The formula for Π assumes a circular orbit. Its adaptation to elliptical orbits is left for future work, but Margot expects it to be the same as that of a circular orbit to within an order of magnitude.

Numerical values

Below is a list of planets and dwarf planets ranked by Margot's planetary discriminant Π, in decreasing order. [2] For all eight planets defined by the IAU, Π is orders of magnitude greater than 1, whereas for all dwarf planets, Π is orders of magnitude less than 1. Also listed are Stern–Levison's Λ and Soter's µ; again, the planets are orders of magnitude greater than 1 for Λ and 100 for µ, and the dwarf planets are orders of magnitude less than 1 for Λ and 100 for µ. Also shown are the distances where Π = 1 and Λ = 1 (where the body would change from being a planet to being a dwarf planet).

The mass of Sedna is not known; it is very roughly estimated here as 1×1021 kg, on the assumption of a density of about 2 g/cm3.

RankNameMargot's planetary
discriminant Π
Soter's planetary
discriminant µ
Stern–Levison
parameter Λ
[lower-alpha 2]
Mass (kg)Type of objectΠ = 1
distance (AU)
Λ = 1
distance (AU)
1 Jupiter 4.0×1046.25×1051.30×1091.8986×10275th planet64,0006220000
2 Saturn 6.1×1031.9×1054.68×1075.6846×10266th planet22,0001,250,000
3 Venus 9.5×1021.3×1061.66×1054.8685×10242nd planet3202,180
4 Earth 8.1×1021.7×1061.53×1055.9736×10243rd planet3802,870
5 Uranus 4.2×1022.9×1043.84×1058.6832×10257th planet4,100102,000
6 Neptune 3.0×1022.4×1042.73×1051.0243×10268th planet4,800127,000
7 Mercury 1.3×1029.1×1041.95×1033.3022×10231st planet2960
8 Mars 5.4×1015.1×1039.42×1026.4185×10234th planet53146
9 Ceres 4.0×10−20.338.32×10−49.43×1020dwarf planet0.160.024
10 Pluto 2.8×10−20.082.95×10−31.29×1022dwarf planet1.700.812
11 Eris 2.0×10−20.102.15×10−31.67×1022dwarf planet2.101.130
12 Haumea 7.8×10−30.02 [5] 2.41×10−44.0×1021dwarf planet0.580.168
13 Makemake 7.3×10−30.02 [5] 2.22×10−4~4.0×1021dwarf planet0.580.168
14 Quaoar 2.7×10−30.007 [5] 1.4×1021dwarf planet
15 Gonggong 2.1×10−30.009 [5] 1.8×1021dwarf planet
16 Orcus 1.4×10−30.003 [5] 6.3×1020dwarf planet
17 Sedna ~1×10−4<0.07 [6] 3.64×10−7 ?dwarf planet

Disagreement

Orbits of celestial bodies in the Kuiper belt with approximate distances and inclination. Objects marked with red are in orbital resonances with Neptune, with Pluto (the largest red circle) located in the "spike" of plutinos at the 2:3 resonance TheKuiperBelt 75AU All.svg
Orbits of celestial bodies in the Kuiper belt with approximate distances and inclination. Objects marked with red are in orbital resonances with Neptune, with Pluto (the largest red circle) located in the "spike" of plutinos at the 2:3 resonance

Stern, the principal investigator of the New Horizons mission to Pluto, disagreed with the reclassification of Pluto on the basis of its inability to clear a neighbourhood. He argued that the IAU's wording is vague, and that — like Pluto — Earth, Mars, Jupiter and Neptune have not cleared their orbital neighbourhoods either. Earth co-orbits with 10,000 near-Earth asteroids (NEAs), and Jupiter has 100,000 trojans in its orbital path. "If Neptune had cleared its zone, Pluto wouldn't be there", he said. [7]

The IAU category of 'planets' is nearly identical to Stern's own proposed category of 'überplanets'. In the paper proposing Stern and Levison's Λ discriminant, they stated, "we define an überplanet as a planetary body in orbit about a star that is dynamically important enough to have cleared its neighboring planetesimals ..." and a few paragraphs later, "From a dynamical standpoint, our solar system clearly contains 8 überplanets"—including Earth, Mars, Jupiter, and Neptune. [3] Although Stern proposed this to define dynamical subcategories of planets, he rejected it for defining what a planet is, advocating the use of intrinsic attributes over dynamical relationships. [8]

See also

Notes

  1. This expression for k can be derived by following Margot's paper as follows: The time required for a body of mass m in orbit around a body of mass M with an orbital period P is: With and C the number of Hill radii to be cleared. This gives requiring that the clearing time tclear to be less than a characteristic timescale t* gives: this means that a body with a mass m can clear its orbit within the designated timescale if it satisfies This can be rewritten as follows so that the variables can be changed to use solar masses, Earth masses, and distances in AU by and Then, equating t* to be the main-sequence lifetime of the star tMS, the above expression can be rewritten using with tSun the main-sequence lifetime of the Sun, and making a similar change in variables to time in years This then gives Then, the orbital-clearing parameter is the mass of the body divided by the minimum mass required to clear its orbit (which is the right-hand side of the above expression) and leaving out the bars for simplicity gives the expression for Π as given in this article: which means that Earth's orbital period can then be used to remove aEarth and PEarth from the expression: which gives so that this becomes Plugging in the numbers gives k = 807.
  2. These values are based on a value of k estimated for Ceres and the asteroid belt: k equals 1.53 × 105 AU1.5/MEarth2, where AU is the astronomical unit and MEarth is the mass of Earth. Accordingly, Λ is dimensionless.

Related Research Articles

Keplers laws of planetary motion Laws describing the motion of planets

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

  1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
  2. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
  3. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
Tidal acceleration

Tidal acceleration is an effect of the tidal forces between an orbiting natural satellite and the primary planet that it orbits. The acceleration causes a gradual recession of a satellite in a prograde orbit away from the primary, and a corresponding slowdown of the primary's rotation. The process eventually leads to tidal locking, usually of the smaller body first, and later the larger body. The Earth–Moon system is the best-studied case.

In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of the Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space.

Stefan–Boltzmann law Physical law on the emissive power of black body

The Stefan–Boltzmann law describes the power radiated from a black body in terms of its temperature. Specifically, the Stefan–Boltzmann law states that the total energy radiated per unit surface area of a black body across all wavelengths per unit time is directly proportional to the fourth power of the black body's thermodynamic temperature T:

Roche limit

In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal forces exceed the second body's gravitational self-attraction. Inside the Roche limit, orbiting material disperses and forms rings, whereas outside the limit, material tends to coalesce. The Roche radius depends on the radius of the first body and on the ratio of the bodies' densities.

Spheroid Surface formed by rotating an ellipse

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

Orbital period Time an astronomical object takes to complete one orbit around another object

The orbital period is the time a given astronomical object takes to complete one orbit around another object, and applies in astronomy usually to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.

Hohmann transfer orbit Elliptical orbit used to transfer between two orbits of different altitudes, in the same plane

In orbital mechanics, the Hohmann transfer orbit is an elliptical orbit used to transfer between two circular orbits of different radii around a central body in the same plane. The Hohmann transfer often uses the lowest possible amount of propellant in traveling between these orbits, but bi-elliptic transfers can use less in some cases.

Orbital speed Speed at which a body orbits around the barycenter of a system

In gravitationally bound systems, the orbital speed of an astronomical body or object is the speed at which it orbits around either the barycenter or, if one object is much more massive than the other bodies in the system, its speed relative to the center of mass of the most massive body.

Gaussian gravitational constant

The Gaussian gravitational constant is a parameter used in the orbital mechanics of the Solar System. It relates the orbital period to the orbit's semi-major axis and the mass of the orbiting body in Solar masses.

Hill sphere Region in which an astronomical body dominates the attraction of satellites

The Hill sphere of an astronomical body is the region in which it dominates the attraction of satellites. To be retained by a planet, a moon must have an orbit that lies within the planet's Hill sphere. That moon would, in turn, have a Hill sphere of its own. Any object within that distance would tend to become a satellite of the moon, rather than of the planet itself. One simple view of the extent of the Solar System is the Hill sphere of the Sun with respect to local stars and the galactic nucleus.

Orbital decay

In orbital mechanics, orbitaldecay is a gradual decrease of the distance between two orbiting bodies at their closest approach over many orbital periods. These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or components of any binary system. Orbits do not decay without some friction-like mechanism which transfers energy from the orbital motion. This can be any of a number of mechanical, gravitational, or electromagnetic effects. For bodies in low Earth orbit, the most significant effect is atmospheric drag.

In celestial mechanics, the standard gravitational parameterμ of a celestial body is the product of the gravitational constant G and the mass M of the body.

Friedmann equations

The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.

In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit.

The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant role.

For most numbered asteroids, almost nothing is known apart from a few physical parameters and orbital elements. Some physical characteristics can only be estimated. The physical data is determined by making certain standard assumptions.

Two-body problem in general relativity Interaction of two bodies in general relativity

The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation.

Semi-major and semi-minor axes Term in geometry; longest and shortest semidiameters of an ellipse

In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.

In orbital mechanics, a frozen orbit is an orbit for an artificial satellite in which natural drifting due to the central body's shape has been minimized by careful selection of the orbital parameters. Typically, this is an orbit in which, over a long period of time, the satellite's altitude remains constant at the same point in each orbit. Changes in the inclination, position of the lowest point of the orbit, and eccentricity have been minimized by choosing initial values so that their perturbations cancel out., which results in a long-term stable orbit that minimizes the use of station-keeping propellant.

References

  1. "IAU 2006 General Assembly: Result of the IAU Resolution votes". IAU. 24 August 2006. Retrieved 2009-10-23.
  2. 1 2 3 4 5 Margot, Jean-Luc (2015-10-15). "A Quantitative Criterion for Defining Planets". The Astronomical Journal. 150 (6): 185–191. arXiv: 1507.06300 . Bibcode:2015AJ....150..185M. doi: 10.1088/0004-6256/150/6/185 .
  3. 1 2 3 4 Stern, S. Alan; Levison, Harold F. (2002). "Regarding the criteria for planethood and proposed planetary classification schemes" (PDF). Highlights of Astronomy. 12: 205–213, as presented at the XXIVth General Assembly of the IAU–2000 [Manchester, UK, 7–18 August 2000]. Bibcode:2002HiA....12..205S. doi: 10.1017/S1539299600013289 .
  4. 1 2 3 4 5 Soter, Steven (2006-08-16). "What Is a Planet?". The Astronomical Journal . 132 (6): 2513–2519. arXiv: astro-ph/0608359 . Bibcode:2006AJ....132.2513S. doi:10.1086/508861. S2CID   14676169.
  5. 1 2 3 4 5 Calculated using the estimate for the mass of the Kuiper belt found in Iorio, 2007 of 0.033 Earth masses
  6. Calculated using the estimate of a minimum of 15 Sedna mass objects in the region. Estimate found in Schwamb, Megan E; Brown, Michael E; Rabinowitz, David L (2009). "A Search for Distant Solar System Bodies in the Region of Sedna". The Astrophysical Journal. 694 (1): L45–8. arXiv: 0901.4173 . Bibcode:2009ApJ...694L..45S. doi:10.1088/0004-637X/694/1/L45. S2CID   15072103.
  7. Rincon, Paul (25 August 2006). "Pluto vote 'hijacked' in revolt". BBC News . Retrieved 2006-09-03.
  8. "Pluto's Planet Title Defender: Q & A With Planetary Scientist Alan Stern". Space.com. 24 August 2011. Retrieved 2016-03-08.