In celestial mechanics, "clearing the neighbourhood" (or dynamical dominance) around a celestial body's orbit describes the body becoming gravitationally dominant such that there are no other bodies of comparable size other than its natural satellites or those otherwise under its gravitational influence.
"Clearing the neighbourhood" is one of three necessary criteria for a celestial body to be considered a planet in the Solar System, according to the definition adopted in 2006 by the International Astronomical Union (IAU). [1] In 2015, a proposal was made to extend the definition to exoplanets. [2]
In the end stages of planet formation, a planet, as so defined, will have "cleared the neighbourhood" of its own orbital zone, i.e. removed other bodies of comparable size. A large body that meets the other criteria for a planet but has not cleared its neighbourhood is classified as a dwarf planet. This includes Pluto, whose orbit is partly inside Neptune's and shares its orbital neighbourhood with many Kuiper belt objects. The IAU's definition does not attach specific numbers or equations to this term, but all IAU-recognised planets have cleared their neighbourhoods to a much greater extent (by orders of magnitude) than any dwarf planet or candidate for dwarf planet. [2]
The phrase stems from a paper presented to the 2000 IAU general assembly by the planetary scientists Alan Stern and Harold F. Levison. The authors used several similar phrases as they developed a theoretical basis for determining if an object orbiting a star is likely to "clear its neighboring region" of planetesimals based on the object's mass and its orbital period. [3] Steven Soter prefers to use the term dynamical dominance, [4] and Jean-Luc Margot notes that such language "seems less prone to misinterpretation". [2]
Prior to 2006, the IAU had no specific rules for naming planets, as no new planets had been discovered for decades, whereas there were well-established rules for naming an abundance of newly discovered small bodies such as asteroids or comets. The naming process for Eris stalled after the announcement of its discovery in 2005, because its size was comparable to that of Pluto. The IAU sought to resolve the naming of Eris by seeking a taxonomical definition to distinguish planets from minor planets.
The phrase refers to an orbiting body (a planet or protoplanet) "sweeping out" its orbital region over time, by gravitationally interacting with smaller bodies nearby. Over many orbital cycles, a large body will tend to cause small bodies either to accrete with it, or to be disturbed to another orbit, or to be captured either as a satellite or into a resonant orbit. As a consequence it does not then share its orbital region with other bodies of significant size, except for its own satellites, or other bodies governed by its own gravitational influence. This latter restriction excludes objects whose orbits may cross but that will never collide with each other due to orbital resonance, such as Jupiter and its trojans, Earth and 3753 Cruithne, or Neptune and the plutinos. [3] As to the extent of orbit clearing required, Jean-Luc Margot emphasises "a planet can never completely clear its orbital zone, because gravitational and radiative forces continually perturb the orbits of asteroids and comets into planet-crossing orbits" and states that the IAU did not intend the impossible standard of impeccable orbit clearing. [2]
In their paper, Stern and Levison sought an algorithm to determine which "planetary bodies control the region surrounding them". [3] They defined Λ (lambda), a measure of a body's ability to scatter smaller masses out of its orbital region over a period of time equal to the age of the Universe (Hubble time). Λ is a dimensionless number defined as
where m is the mass of the body, a is the body's semi-major axis, and k is a function of the orbital elements of the small body being scattered and the degree to which it must be scattered. In the domain of the solar planetary disc, there is little variation in the average values of k for small bodies at a particular distance from the Sun. [4]
If Λ > 1, then the body will likely clear out the small bodies in its orbital zone. Stern and Levison used this discriminant to separate the gravitationally rounded, Sun-orbiting bodies into überplanets, which are "dynamically important enough to have cleared [their] neighboring planetesimals", and unterplanets. The überplanets are the eight most massive solar orbiters (i.e. the IAU planets), and the unterplanets are the rest (i.e. the IAU dwarf planets).
Steven Soter proposed an observationally based measure μ (mu), which he called the "planetary discriminant", to separate bodies orbiting stars into planets and non-planets. [4] He defines μ as where μ is a dimensionless parameter, M is the mass of the candidate planet, and m is the mass of all other bodies that share an orbital zone, that is all bodies whose orbits cross a common radial distance from the primary, and whose non-resonant periods differ by less than an order of magnitude. [4]
The order-of-magnitude similarity in period requirement excludes comets from the calculation, but the combined mass of the comets turns out to be negligible compared with the other small Solar System bodies, so their inclusion would have little impact on the results. μ is then calculated by dividing the mass of the candidate body by the total mass of the other objects that share its orbital zone. It is a measure of the actual degree of cleanliness of the orbital zone. Soter proposed that if μ > 100, then the candidate body be regarded as a planet. [4]
Astronomer Jean-Luc Margot has proposed a discriminant, Π (pi), that can categorise a body based only on its own mass, its semi-major axis, and its star's mass. [2] Like Stern–Levison's Λ, Π is a measure of the ability of the body to clear its orbit, but unlike Λ, it is solely based on theory and does not use empirical data from the Solar System. Π is based on properties that are feasibly determinable even for exoplanetary bodies, unlike Soter's μ, which requires an accurate census of the orbital zone.
where m is the mass of the candidate body in Earth masses, a is its semi-major axis in AU, M is the mass of the parent star in solar masses, and k is a constant chosen so that Π > 1 for a body that can clear its orbital zone. k depends on the extent of clearing desired and the time required to do so. Margot selected an extent of times the Hill radius and a time limit of the parent star's lifetime on the main sequence (which is a function of the mass of the star). Then, in the mentioned units and a main-sequence lifetime of 10 billion years, k = 807. [a] The body is a planet if Π > 1. The minimum mass necessary to clear the given orbit is given when Π = 1.
Π is based on a calculation of the number of orbits required for the candidate body to impart enough energy to a small body in a nearby orbit such that the smaller body is cleared out of the desired orbital extent. This is unlike Λ, which uses an average of the clearing times required for a sample of asteroids in the asteroid belt, and is thus biased to that region of the Solar System. Π's use of the main-sequence lifetime means that the body will eventually clear an orbit around the star; Λ's use of a Hubble time means that the star might disrupt its planetary system (e.g. by going nova) before the object is actually able to clear its orbit.
The formula for Π assumes a circular orbit. Its adaptation to elliptical orbits is left for future work, but Margot expects it to be the same as that of a circular orbit to within an order of magnitude.
To accommodate planets in orbit around brown dwarfs, an updated version of the criterion with a uniform clearing time scale of 10 billion years was published in 2024. [5] The values of Π for Solar System bodies remain unchanged.
Below is a list of planets and dwarf planets ranked by Margot's planetary discriminant Π, in decreasing order. [2] For all eight planets defined by the IAU, Π is orders of magnitude greater than 1, whereas for all dwarf planets, Π is orders of magnitude less than 1. Also listed are Stern–Levison's Λ and Soter's μ; again, the planets are orders of magnitude greater than 1 for Λ and 100 for μ, and the dwarf planets are orders of magnitude less than 1 for Λ and 100 for μ. Also shown are the distances where Π = 1 and Λ = 1 (where the body would change from being a planet to being a dwarf planet).
The mass of Sedna is not known; it is very roughly estimated here as 1021 kg, on the assumption of a density of about 2 g/cm3.
Rank | Name | Margot's planetary discriminant Π | Soter's planetary discriminant μ | Stern–Levison parameter Λ [b] | Mass (kg) | Type of object | Π = 1 distance (AU) | Λ = 1 distance (AU) |
---|---|---|---|---|---|---|---|---|
1 | Jupiter | 40,115 | 6.25×105 | 1.30×109 | 1.8986×1027 | 5th planet | 64,000 | 6,220,000 |
2 | Saturn | 6,044 | 1.9×105 | 4.68×107 | 5.6846×1026 | 6th planet | 22,000 | 1,250,000 |
3 | Venus | 947 | 1.3×106 | 1.66×105 | 4.8685×1024 | 2nd planet | 320 | 2,180 |
4 | Earth | 807 | 1.7×106 | 1.53×105 | 5.9736×1024 | 3rd planet | 380 | 2,870 |
5 | Uranus | 423 | 2.9×104 | 3.84×105 | 8.6832×1025 | 7th planet | 4,100 | 102,000 |
6 | Neptune | 301 | 2.4×104 | 2.73×105 | 1.0243×1026 | 8th planet | 4,800 | 127,000 |
7 | Mercury | 129 | 9.1×104 | 1.95×103 | 3.3022×1023 | 1st planet | 29 | 60 |
8 | Mars | 54 | 5.1×103 | 9.42×102 | 6.4185×1023 | 4th planet | 53 | 146 |
9 | Ceres | 0.04 | 0.33 | 8.32×10−4 | 9.43×1020 | dwarf planet | 0.16 | 0.024 |
10 | Pluto | 0.028 | 0.08 | 2.95×10−3 | 1.29×1022 | dwarf planet | 1.70 | 0.812 |
11 | Eris | 0.020 | 0.10 | 2.15×10−3 | 1.67×1022 | dwarf planet | 2.10 | 1.130 |
12 | Haumea | 0.0078 | 0.02 [6] | 2.41×10−4 | 4.0×1021 | dwarf planet | 0.58 | 0.168 |
13 | Makemake | 0.0073 | 0.02 [6] | 2.22×10−4 | ~4.0×1021 | dwarf planet | 0.58 | 0.168 |
14 | Quaoar | 0.0027 | 0.007 [6] | 1.4×1021 | dwarf planet | |||
15 | Gonggong | 0.0021 | 0.009 [6] | 1.8×1021 | dwarf planet | |||
16 | Orcus | 0.0014 | 0.003 [6] | 6.3×1020 | dwarf planet | |||
17 | Sedna | ~0.0001 | <0.07 [7] | 3.64×10−7 | ? | dwarf planet | ||
Stern, the principal investigator of the New Horizons mission to Pluto, disagreed with the reclassification of Pluto on the basis of its inability to clear a neighbourhood. He argued that the IAU's wording is vague, and that — like Pluto — Earth, Mars, Jupiter and Neptune have not cleared their orbital neighbourhoods either. Earth co-orbits with 10,000 near-Earth asteroids (NEAs), and Jupiter has 100,000 trojans in its orbital path. "If Neptune had cleared its zone, Pluto wouldn't be there", he said. [8]
The IAU category of 'planets' is nearly identical to Stern's own proposed category of 'überplanets'. In the paper proposing Stern and Levison's Λ discriminant, they stated, "we define an überplanet as a planetary body in orbit about a star that is dynamically important enough to have cleared its neighboring planetesimals ..." and a few paragraphs later, "From a dynamical standpoint, our solar system clearly contains 8 überplanets" — including Earth, Mars, Jupiter, and Neptune. [3] Although Stern proposed this to define dynamical subcategories of planets, he rejected it for defining what a planet is, advocating the use of intrinsic attributes over dynamical relationships. [9]
In astronomy, absolute magnitude is a measure of the luminosity of a celestial object on an inverse logarithmic astronomical magnitude scale; the more luminous an object, the lower its magnitude number. An object's absolute magnitude is defined to be equal to the apparent magnitude that the object would have if it were viewed from a distance of exactly 10 parsecs, without extinction of its light due to absorption by interstellar matter and cosmic dust. By hypothetically placing all objects at a standard reference distance from the observer, their luminosities can be directly compared among each other on a magnitude scale. For Solar System bodies that shine in reflected light, a different definition of absolute magnitude (H) is used, based on a standard reference distance of one astronomical unit.
In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609, describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary velocities vary. The three laws state that:
In celestial mechanics, escape velocity or escape speed is the minimum speed needed for an object to escape from contact with or orbit of a primary body, assuming:
In fluid mechanics, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary physics of Earth, the pressure-gradient force prevents gravity from collapsing the planetary atmosphere into a thin, dense shell, whereas gravity prevents the pressure-gradient force from diffusing the atmosphere into outer space. In general, it is what causes objects in space to be spherical.
A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.
The orbital period is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars. It may also refer to the time it takes a satellite orbiting a planet or moon to complete one orbit.
In astronautics, the Hohmann transfer orbit is an orbital maneuver used to transfer a spacecraft between two orbits of different altitudes around a central body. For example, a Hohmann transfer could be used to raise a satellite's orbit from low Earth orbit to geostationary orbit. In the idealized case, the initial and target orbits are both circular and coplanar. The maneuver is accomplished by placing the craft into an elliptical transfer orbit that is tangential to both the initial and target orbits. The maneuver uses two impulsive engine burns: the first establishes the transfer orbit, and the second adjusts the orbit to match the target.
In gravitationally bound systems, the orbital speed of an astronomical body or object is the speed at which it orbits around either the barycenter or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
The Gaussian gravitational constant is a parameter used in the orbital mechanics of the Solar System. It relates the orbital period to the orbit's semi-major axis and the mass of the orbiting body in Solar masses.
The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).
Stellar dynamics is the branch of astrophysics which describes in a statistical way the collective motions of stars subject to their mutual gravity. The essential difference from celestial mechanics is that the number of body
Orbital decay is a gradual decrease of the distance between two orbiting bodies at their closest approach over many orbital periods. These orbiting bodies can be a planet and its satellite, a star and any object orbiting it, or components of any binary system. If left unchecked, the decay eventually results in termination of the orbit when the smaller object strikes the surface of the primary; or for objects where the primary has an atmosphere, the smaller object burns, explodes, or otherwise breaks up in the larger object's atmosphere; or for objects where the primary is a star, ends with incineration by the star's radiation. Collisions of stellar-mass objects are usually accompanied by effects such as gamma-ray bursts and detectable gravitational waves.
The standard gravitational parameterμ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G(m1 + m2), or as GM when one body is much larger than the other:
In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, assuming constant speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. The concept applies equally well to a small body revolving about a large, massive primary body or to two relatively same-sized bodies revolving about a common center of mass. While nominally a mean, and theoretically so in the case of two-body motion, in practice the mean motion is not typically an average over time for the orbits of real bodies, which only approximate the two-body assumption. It is rather the instantaneous value which satisfies the above conditions as calculated from the current gravitational and geometric circumstances of the body's constantly-changing, perturbed orbit.
The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant role.
A gravity train is a theoretical means of transportation for purposes of commuting between two points on the surface of a sphere, by following a straight tunnel connecting the two points through the interior of the sphere.
For most numbered asteroids, almost nothing is known apart from a few physical parameters and orbital elements. Some physical characteristics can only be estimated. The physical data is determined by making certain standard assumptions.
The two-body problem in general relativity is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun. Solutions are also used to describe the motion of binary stars around each other, and estimate their gradual loss of energy through gravitational radiation.
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.
In orbital mechanics, a frozen orbit is an orbit for an artificial satellite in which perturbations have been minimized by careful selection of the orbital parameters. Perturbations can result from natural drifting due to the central body's shape, or other factors. Typically, the altitude of a satellite in a frozen orbit remains constant at the same point in each revolution over a long period of time. Variations in the inclination, position of the apsis of the orbit, and eccentricity have been minimized by choosing initial values so that their perturbations cancel out. This results in a long-term stable orbit that minimizes the use of station-keeping propellant.