(84522) 2002 TC302

Last updated
(84522) 2002 TC302
84522-2002tc302 hst.jpg
Hubble Space Telescope image of 2002 TC302 taken in 2005
Discovery [1] [2]
Discovered by M. E. Brown
C. A. Trujillo
D. L. Rabinowitz
Discovery site Palomar Obs.
Discovery date9 October 2002
Designations
(84522) 2002 TC302
TNO [3]  · 2:5 resonant [4] [5]
distant [1]
Orbital characteristics [3]
Epoch 1 July 2021 (JD 2459396.5)
Uncertainty parameter 2 [3]  ·3 [1]
Observation arc 20.49 yr (7,484 d)
Earliest precovery date5 August 2000
Aphelion 71.382 AU
Perihelion 39.169 AU
55.275 AU
Eccentricity 0.2914
410.97 yr (150,105 d)
327.19°
0° 0m 8.64s / day
Inclination 34.993°
23.801°
14 December 2058 [lower-alpha 1]
86.312°
Physical characteristics
Dimensions543±18 × 460±11  km (projected area) [6]
Mean diameter
500±14 km(area equiv.) [6]
584.1+105.6
−88.0
 km
(thermal) [7]
56.1  h [6]
0.147 [6]
0.115+0.047
−0.033
[7]
IR (moderately red) [8]
B–V=1.03 [9]
V–R=0.67 [9]
20.5 [1]
3.94 [3] [1]
4.23 [6]
4.17±0.10 [7]

    (84522) 2002 TC302 (provisional designation 2002 TC302) is a mid-sized trans-Neptunian object located in the outermost region of the Solar System. It was discovered on 9 October 2002, by American astronomers Mike Brown, Chad Trujillo and David Rabinowitz at the Palomar Observatory in California. [1] The resonant trans-Neptunian object stays in a 2:5 resonance with Neptune. It has a reddish color, a rotation period of 56.1 hours and measures at least 500 kilometers (310 miles) in diameter.

    Contents

    Orbit and classification

    2002 TC302 orbits the Sun at a distance of 39.2–71.4  AU once every 410 years and 12 months (150,105 days; semi-major axis of 55.28 AU). Its orbit has an eccentricity of 0.29 and an inclination of 35° with respect to the ecliptic. [3] In December 2058, It will come to perihelion (minimum distance from the Sun) at 39.2 AU, [3] which is about the same as Pluto's semi-major axis (average distance from the Sun). Given the long orbit that TNOs have around the Sun, 2002 TC302 comes to opposition in late October of each year at an apparent magnitude of 20.5. [10]

    Both the Minor Planet Center (MPC) and the Deep Ecliptic Survey (DES) show 2002 TC302 to be a resonant trans-Neptunian object in a 2:5 resonance with Neptune, meaning it completes two orbits for every five orbits of Neptune. [4] [5] [11]

    Dwarf2002TC302-color.png
    A still frame showing the motion of 2002 TC302 relative to Neptune being held stationary
    Dwarf2002TC302 46000y.gif
    The 2:5 resonance motion of 2002 TC302 (red) and the 2:3 resonance of Pluto (grey). Neptune is held stationary.

    Physical characteristics

    Comparison of 2002 TC302 with selected other trans-Neptunian objects TheTransneptunians Size Albedo Color.svg
    Comparison of 2002 TC302 with selected other trans-Neptunian objects

    2002 TC302 has an absolute magnitude of 3.78. [3] It has an estimated diameter of 584.1+105.6
    −88.0
     km
    . [7] Using the Spitzer Space Telescope, it was previously estimated to have a diameter of 1145+337
    −325
     km
    , [8] which would have made it one of the largest TNOs. This overestimation was due to insufficient motion to allow for a good sky subtraction, and because 2002 TC302 was very close to a brighter background object. [7] Brown noted that the Spitzer measurement involved a very large potential error and that the object would likely be much smaller. [12]

    The red spectra suggests that 2002 TC302 has very little fresh ice on its surface. [8] Its rotation period was initially estimated by Thirouin et al. to be 5.41 h, based on a light-curve amplitude of 0.04±0.01 mag. [13] However, this short rotation period was most likely an alias due to a bias for shorter and more easily discernable shorter periods. 2002 TC302 is highly oblate, and Ortiz et al. suggest a longer rotation period estimate of 56.1 hours. [6]

    An occultation of a 15.3 magnitude star by 2002 TC302 on 28 January 2018 over Europe suggests that it has highly oblate shape with dimensions of 543.2±18 × 459.5±11 km and a projected axial ratio of a/c=1.18. [6] The area equivalent diameter of 2002 TC302 is 499.6 km. [6]

    On 11 November 2021, an occultation across North America and Europe detected an oblate shape of 530 × 467 km (mean 499 km), in strong agreement with the 2018 occultation results. No satellites were detected. [14]

    Possible satellite

    The mean diameter of 2002 TC302 determined from occultations in 2018 is smaller than the larger diameter estimate of 584.1+105.6
    −88.0
     km
    by Spitzer in 2008. Despite the large uncertainty in the Spitzer's estimate, the difference of ~84 km between the two diameters is significant, implying that 2002 TC302 may have a large satellite with a possible size range of 100–300 km, nearly as large as 2002 TC302 itself. [15] This possible satellite is expected to orbit 2002 TC302 at a very close distance of less than 2000 km, close enough to slow down 2002 TC302's rotation through tidal interactions. [6]

    If both the primary body and satellite are doubly tidally locked, then the expected orbital period of the satellite would be approximately 54 hours, equal to 2002 TC302's rotation. Given an orbital period of 54 hours, the satellite's estimated orbital separation from the primary would be 1780 km, with an angular separation of 58 milliarcseconds, too small to be resolved with current space telescopes such as Hubble. Under the assumption the satellite's diameter is 200 km, it would cause 2002 TC302's position to oscillate by 18 milliarcseconds as it orbits around its barycenter. [6]

    See also

    Notes

    1. 22 October 2058 ±2 days per JPL Horizons Observer Location: @sun (Perihelion occurs when deldot changes from negative to positive. Uncertainty in time of perihelion is 3-sigma.)

    Related Research Articles

    <span class="mw-page-title-main">Trans-Neptunian object</span> Solar system objects beyond Neptune

    A trans-Neptunian object (TNO), also written transneptunian object, is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune, which has an orbital semi-major axis of 30.1 astronomical units (au).

    <span class="mw-page-title-main">28978 Ixion</span> Plutino

    28978 Ixion (, provisional designation 2001 KX76) is a large trans-Neptunian object and a possible dwarf planet. It is located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Ixion is classified as a plutino, a dynamical class of objects in a 2:3 orbital resonance with Neptune. It was discovered in May 2001 by astronomers of the Deep Ecliptic Survey at the Cerro Tololo Inter-American Observatory, and was announced in July 2001. The object is named after the Greek mythological figure Ixion, who was a king of the Lapiths.

    <span class="mw-page-title-main">20000 Varuna</span> Kuiper belt object

    20000 Varuna (provisional designation 2000 WR106) is a large trans-Neptunian object in the Kuiper belt. It was discovered in November 2000 by American astronomer Robert McMillan during a Spacewatch survey at the Kitt Peak National Observatory. It is named after the Hindu deity Varuna, one of the oldest deities mentioned in the Vedic texts.

    <span class="mw-page-title-main">90482 Orcus</span> Trans-Neptunian object and dwarf planet

    Orcus is a large trans-Neptunian object with a large moon, Vanth. It has a diameter of 870 to 960 km, the size of or somewhat smaller than the Inner Solar System dwarf planet Ceres. Orcus is generally accepted by astronomers as a dwarf planet, although there is some doubt. The surface of Orcus is relatively bright with albedo reaching 23 percent, neutral in color and rich in water ice. The ice is predominantly in crystalline form, which may be related to past cryovolcanic activity. Other compounds like methane or ammonia may also be present on its surface. Orcus was discovered by American astronomers Michael Brown, Chad Trujillo, and David Rabinowitz on 17 February 2004.

    <span class="mw-page-title-main">38628 Huya</span> Trans-Neptunian object

    38628 Huya ( hoo-YAH), provisional designation 2000 EB173, is a binary trans-Neptunian object located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Huya is classified as a plutino, a dynamical class of trans-Neptunian objects with orbits in a 3:2 orbital resonance with Neptune. It was discovered by the Quasar Equatorial Survey Team and was identified by Venezuelan astronomer Ignacio Ferrín in March 2000. It is named after Juyá, the mythological rain god of the Wayuu people native to South America.

    <span class="nowrap">(55565) 2002 AW<sub>197</sub></span> Classical Kuiper belt object

    (55565) 2002 AW197 (provisional designation 2002 AW197) is a classical, non-resonant trans-Neptunian object from the Kuiper belt in the outermost region of the Solar System, also known as a cubewano. With a likely diameter of at least 700 kilometers (430 miles), it is approximately tied with 2002 MS4 and 2013 FY27 (to within measurement uncertainties) as the largest unnamed object in the Solar System. It was discovered at Palomar Observatory in 2002.

    <span class="nowrap">(55637) 2002 UX<sub>25</sub></span> Spitzer dwarf-planet candidate

    (55637) 2002 UX25 (provisional designation 2002 UX25) is a trans-Neptunian object that orbits the Sun in the Kuiper belt beyond Neptune. It briefly garnered scientific attention when it was found to have an unexpectedly low density of about 0.82 g/cm3.

    <span class="nowrap">(307261) 2002 MS<sub>4</sub></span> Classical Kuiper belt object

    (307261) 2002 MS4 (provisional designation 2002 MS4) is a large trans-Neptunian object in the Kuiper belt, which is a region of icy planetesimals beyond Neptune. It was discovered on 18 June 2002 by Chad Trujillo and Michael Brown during their search for bright, Pluto-sized Kuiper belt objects at Palomar Observatory. To within measurement uncertainties, 2002 MS4, 2002 AW197, and 2013 FY27 have a diameter close to 800 km (500 mi), which makes them the largest unnamed objects in the Solar System. 2002 MS4 is large enough that astronomers consider it a possible dwarf planet.

    <span class="nowrap">(208996) 2003 AZ<sub>84</sub></span> Plutino

    (208996) 2003 AZ84 (provisional designation 2003 AZ84) is a trans-Neptunian object with a possible moon located in the outer regions of the Solar System. It is approximately 940 kilometers across its longest axis, as it has an elongated shape. It belongs to the plutinos – a group of minor planets named after its largest member Pluto – as it orbits in a 2:3 resonance with Neptune in the Kuiper belt. It is the third-largest known plutino, after Pluto and Orcus. It was discovered on 13 January 2003, by American astronomers Chad Trujillo and Michael Brown during the NEAT survey using the Samuel Oschin telescope at Palomar Observatory.

    <span class="mw-page-title-main">174567 Varda</span> Trans-Neptunian object

    174567 Varda (provisional designation 2003 MW12) is a binary trans-Neptunian planetoid of the resonant hot classical population of the Kuiper belt, located in the outermost region of the Solar System. Its moon, Ilmarë, was discovered in 2009.

    <span class="nowrap">(84922) 2003 VS<sub>2</sub></span> Trans-Neptunian object

    (84922) 2003 VS2 is a trans-Neptunian object discovered by the Near Earth Asteroid Tracking program on 14 November 2003. Like Pluto, it is in a 2:3 orbital resonance with Neptune and is thus a plutino. Analysis of light-curve suggests that it is not a dwarf planet.

    (35671) 1998 SN165 (provisional designation 1998 SN165) is a trans-Neptunian object from the Kuiper belt located in the outermost region of the Solar System. It was discovered on 23 September 1998, by American astronomer Arianna Gleason at the Kitt Peak National Observatory near Tucson, Arizona. The cold classical Kuiper belt object is a dwarf planet candidate, as it measures approximately 400 kilometers (250 miles) in diameter. It has a grey-blue color (BB) and a rotation period of 8.8 hours. As of 2021, it has not been named.

    <span class="nowrap">(40314) 1999 KR<sub>16</sub></span>

    (40314) 1999 KR16 is a trans-Neptunian object on an eccentric orbit in the outermost region of the Solar System, approximately 254 kilometers (158 miles) in diameter. It was discovered on 16 May 1999, by French astronomer Audrey Delsanti and Oliver Hainaut at ESO's La Silla Observatory in northern Chile. The very reddish object is a dwarf planet candidate and has a rotation period of 11.7 hours.

    <span class="mw-page-title-main">229762 Gǃkúnǁʼhòmdímà</span> Trans-Neptunian object

    229762 Gǃkúnǁʼhòmdímà (provisional designation 2007 UK126) is a trans-Neptunian object and binary system from the extended scattered disc, located in the outermost region of the Solar System. It was discovered on 19 October 2007 by American astronomers Megan Schwamb, Michael Brown, and David Rabinowitz at the Palomar Observatory in California and measures approximately 600 kilometers (400 miles) in diameter. This medium-sized TNO appears to be representative of a class of mid-sized objects under approximately 1000 km that have not collapsed into fully solid bodies. Its 100-kilometer moon was discovered by Keith Noll, Will Grundy, and colleagues with the Hubble Space Telescope in 2008, and named Gǃòʼé ǃHú.

    <span class="mw-page-title-main">50000 Quaoar</span> Cold classical Kuiper belt object

    Quaoar is a ringed dwarf planet in the Kuiper belt, a region of icy planetesimals beyond Neptune. A non-resonant object (cubewano), it measures approximately 1,086 km (675 mi) in diameter, about the size of Saturn's moon Dione or half the size of Pluto. The object was discovered by American astronomers Chad Trujillo and Michael Brown at the Palomar Observatory on 4 June 2002. Signs of water ice on the surface of Quaoar have been found, which suggests that cryovolcanism may be occurring on Quaoar. A small amount of methane is present on its surface, which can only be retained by the largest Kuiper belt objects.

    <span class="mw-page-title-main">471143 Dziewanna</span> Scattered disc object

    471143 Dziewanna (provisional designation 2010 EK139) is a trans-Neptunian object in the scattered disc, orbiting the Sun in the outermost region of the Solar System.

    (55638) 2002 VE95 (provisional designation 2002 VE95) is a trans-Neptunian object from the outermost region of the Solar System. It was discovered on 14 November 2002, by astronomers with the Near-Earth Asteroid Tracking program at the Palomar Observatory in California, United States. This resonant trans-Neptunian object is a member of the plutino population, locked in a 2:3 resonance with Neptune. The object is likely of primordial origin with a heterogeneous surface and a notably reddish color (RR) attributed to the presence of methanol and tholins. It has a poorly defined rotation period of 6.8 hours and measures approximately 250 kilometers (160 miles) in diameter, too small to be a dwarf planet candidate. As of 2021, it has not yet been named.

    (444030) 2004 NT33 is a classical trans-Neptunian object and possible dwarf planet of the Kuiper belt in the outermost region of the Solar System, approximately 450 kilometers in diameter. It was discovered on 13 July 2004, by astronomers at Palomar Observatory, California, United States.

    (508869) 2002 VT130, provisional designation 2002 VT130, is a trans-Neptunian object and binary system from the classical Kuiper belt, located in the outermost region of the Solar System. It was discovered by American astronomer Marc Buie at Kitt Peak Observatory on 7 November 2002. The primary measures approximately 324 kilometers (201 miles) in diameter.

    (523764) 2014 WC510 (provisional designation 2014 WC510) is a binary trans-Neptunian object discovered on 8 September 2011 by the Pan-STARRS survey at the Haleakalā Observatory in Hawaii. It was found by Pan-STARRS on 20 November 2014 and was announced later in July 2016 after additional observations and precovery identifications. It is in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. It is classified as a plutino, a dynamical class of objects in a 2:3 orbital resonance with Neptune. On 1 December 2018, a team of astronomers observed a stellar occultation by the object, which revealed that it is a compact binary system consisting of two separate components in close orbit around each other. The primary and secondary components are estimated to have diameters of around 180 km (110 mi) and 140 km (87 mi), respectively.

    References

    1. 1 2 3 4 5 6 "84522 (2002 TC302)". Minor Planet Center. Retrieved 25 July 2021.
    2. "MPEC 2002-V26 : 2002 TC302". Minor Planet Electronic Circular . 7 November 2002.
    3. 1 2 3 4 5 6 7 "JPL Small-Body Database Browser: 84522 (2002 TC302)" (2021-01-31 last obs.). Jet Propulsion Laboratory . Retrieved 25 July 2021.
    4. 1 2 Marc W. Buie. "Orbit Fit and Astrometric record for 84522". Southwest Research Institute . Retrieved 25 July 2021. The Deep Ecliptic Survey Object Classifications
    5. 1 2 Johnston, Wm. Robert (18 August 2020). "List of Known Trans-Neptunian Objects". Johnston's Archive. Retrieved 25 July 2021.
    6. 1 2 3 4 5 6 7 8 9 10 Ortiz, J. L.; Santos-Sanz, P.; Sicardy, B.; Benedetti-Rossi, G.; Duffard, E.; Morales, N. (18 May 2020). "The large Trans-Neptunian Object 2002 TC302 from combined stellar occultation, photometry and astrometry data". Astronomy & Astrophysics. A134: 639. arXiv: 2005.08881 . doi:10.1051/0004-6361/202038046. S2CID   218673812.
    7. 1 2 3 4 5 Fornasier, S.; Lellouch, E.; Müller, T.; Santos-Sanz, P.; Panuzzo, P.; Kiss, C.; et al. (July 2013). "TNOs are Cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm". Astronomy & Astrophysics. 555: A15. arXiv: 1305.0449 . Bibcode:2013A&A...555A..15F. doi:10.1051/0004-6361/201321329. ISSN   0004-6361. S2CID   119261700. A15.
    8. 1 2 3 John Stansberry; Will Grundy; Mike Brown; Dale Cruikshank; et al. (2007). Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope. arXiv: astro-ph/0702538 . Bibcode:2008ssbn.book..161S.
    9. 1 2 Tegler, Stephen C. (2006-01-26). "Kuiper Belt Object Magnitudes and Surface Colors". Archived from the original on 2006-09-01. Retrieved 2006-11-05.
    10. "(84522) 2002 TC302". Minor Planet Center. 2010-07-23. Retrieved 2010-10-24.
    11. "MPEC 2009-C70 :Distant Minor Planets (2009 FEB. 28.0 TT)". Minor Planet Electronic Circular. 10 November 2009.
    12. Brown, Michael E. "How many dwarf planets are there in the outer solar system?". California Institute of Technology . Retrieved 31 August 2016.
    13. Thirouin, A.; Ortiz, J. L.; Campo Bagatin, A.; Pravec, P.; Morales, N.; Hainaut, O.; et al. (August 2012). "Short-term variability of 10 trans-Neptunian objects". Monthly Notices of the Royal Astronomical Society. 424 (4): 3156–3177. arXiv: 1207.2044 . Bibcode:2012MNRAS.424.3156T. doi:10.1111/j.1365-2966.2012.21477.x. ISSN   0035-8711. S2CID   53467482.
    14. Frappa, Eric. "2002 TC302 preliminary occultation path" . Retrieved 15 November 2021.
    15. Starr, Michelle (22 May 2020). "Astronomers May Have Spotted a Tiny Moon in The Outer Solar System".