Kepler-25b

Last updated
Kepler-25b
Discovery [1]
Discovered by Steffen et al.
Discovery site Kepler Space Observatory
Discovery date2012
Transits, and transit-timing variations
Designations
KOI-244.02 [2]
Orbital characteristics [3] [1]
0.068  AU
Eccentricity 0.0029+0.0023
−0.0017
6.238297±0.000017 d
Inclination 92.827+0.084
−0.083
 º
Star Kepler-25
Physical characteristics [3]
Mean radius
2.748+0.038
−0.035
  R🜨
Mass ≥8.7+2.5
−2.3
  M🜨
Mean density
2.32+0.67
−0.61
  g/cm3

    Kepler-25b is an extrasolar planet orbiting the star Kepler-25, located in the constellation Lyra. [4] The planet was first detected as a candidate extrasolar planet by the Kepler space telescope in 2011. [5] It was confirmed, in 2012, by Jason Steffen and collaborators using transit-timing variations obtained by the Kepler Space Telescope. [1]

    Related Research Articles

    <span class="mw-page-title-main">Kepler-4b</span> Extrasolar planet in the constellation Draco

    Kepler-4b, initially known as KOI 7.01, is an extrasolar planet first detected as a transit by the Kepler spacecraft. Its radius and mass are similar to that of Neptune; however, due to its proximity to its host star, it is substantially hotter than any planet in the Solar System. The planet's discovery was announced on January 4, 2010, in Washington, D.C., along with four other planets that were initially detected by the Kepler spacecraft and subsequently confirmed by telescopes at the W.M. Keck Observatory.

    Kepler-4 is a sunlike star located about 1610 light-years away in the constellation Draco. It is in the field of view of the Kepler Mission, a NASA operation purposed with finding Earth-like planets. Kepler-4b, a Neptune-sized planet that orbits extremely close to its star, was discovered in its orbit and made public by the Kepler team on January 4, 2010. Kepler-4b was the first discovery by the Kepler satellite, and its confirmation helped to demonstrate the spacecraft's effectiveness.

    <span class="mw-page-title-main">Transit-timing variation</span> Exoplanet detection method using transit timing variations

    Transit-timing variation is a method for detecting exoplanets by observing variations in the timing of a transit. This provides an extremely sensitive method capable of detecting additional planets in the system with masses potentially as small as that of Earth. In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Detecting this effect by measuring the change is known as transit-timing variations. "Timing variation" asks whether the transit occurs with strict periodicity or if there's a variation.

    <span class="mw-page-title-main">Kepler-9</span> Star located in the constellation Lyra

    Kepler-9 is a sunlike star in the constellation Lyra. Its planetary system, discovered by the Kepler Mission in 2010 was the first detected with the transit method found to contain multiple planets.

    A Kepler object of interest (KOI) is a star observed by the Kepler space telescope that is suspected of hosting one or more transiting planets. KOIs come from a master list of 150,000 stars, which itself is generated from the Kepler Input Catalog (KIC). A KOI shows a periodic dimming, indicative of an unseen planet passing between the star and Earth, eclipsing part of the star. However, such an observed dimming is not a guarantee of a transiting planet, because other astronomical objects—such as an eclipsing binary in the background—can mimic a transit signal. For this reason, the majority of KOIs are as yet not confirmed transiting planet systems.

    Kepler-19b is a planet orbiting around the star Kepler-19. The planet has an orbital period of 9.3 days, with an estimated radius of roughly 2.2 times that of the Earth, with a mass around 8.4 times that of the Earth. It is one of three planets orbiting Kepler-19.

    Kepler-32 is an M-type main sequence star located about 1070 light years from Earth, in the constellation of Cygnus. Discovered in January 2012 by the Kepler spacecraft, it shows a 0.58 ± 0.05 solar mass (M), a 0.53 ± 0.04 solar radius (R), and temperature of 3900.0 K, making it half the mass and radius of the Sun, two-thirds its temperature and 5% its luminosity.

    <span class="mw-page-title-main">Kepler-90</span> Star in the constellation Draco, orbited by eight planets

    Kepler-90, also designated 2MASS J18574403+4918185, is an F-type star located about 2,790 light-years (855 pc) from Earth in the constellation of Draco. It is notable for possessing a planetary system that has the same number of observed planets as the Solar System.

    Kepler-23 is a star in the northern constellation of Cygnus, the swan, that is orbited by a planet found to be unequivocally within the star's habitable zone. With an apparent visual magnitude of 14.0, this star is too faint to be seen with the naked eye.

    <span class="mw-page-title-main">Kepler-25</span> Yellow-white hued star in the constellation Lyra

    Kepler-25 is a star in the northern constellation of Lyra. It is slightly larger and more massive than the sun with a luminosity 212 times that of the sun. With an apparent visual magnitude of 10.6, this star is too faint to be seen with the naked eye.

    <span class="mw-page-title-main">Kepler-26</span> Star in the constellation Lyra

    Kepler-26 is a star in the northern constellation of Lyra. It is located at the celestial coordinates: Right Ascension 18h 59m 45.8407s Declination +46° 33′ 59.438″. With an apparent visual magnitude of 15.5, this star is too faint to be seen with the naked eye.

    Kepler-30 is a star in the northern constellation of Lyra. It is located at the celestial coordinates: Right Ascension 19h 01m 08.0747s Declination +38° 56′ 50.219″. With an apparent visual magnitude of 15.5, this star is too faint to be seen with the naked eye. Kepler-30 is exhibiting a strong starspot activity.

    Kepler-31 is a star in the northern constellation of Cygnus, the swan, that is orbited by a planet found to be unequivocally within the star's habitable zone. It is located at the celestial coordinates: Right Ascension 19h 36m 05.5270s, Declination +45° 51′ 11.106″. With an apparent visual magnitude of 14.0, this star is too faint to be seen with the naked eye.

    <span class="mw-page-title-main">Kepler-27</span> G-type star in the constellation Cygnus

    Kepler-27 is a star in the northern constellation of Cygnus, the swan. It is located at the celestial coordinates: Right Ascension 19h 28m 56.81962s, Declination +41° 05′ 09.1405″. With an apparent visual magnitude of 15.855, this star is too faint to be seen with the naked eye.

    Kepler-28 is a star in the northern constellation of Cygnus., It is orbited by two exoplanets. It is located at the celestial coordinates: Right Ascension 19h 28m 32.8905s, Declination +42° 25′ 45.959″. With an apparent visual magnitude of 15.036, this star is too faint to be seen with the naked eye.

    Kepler-29 is a Sun-like star in the northern constellation of Cygnus. It is located at the celestial coordinates: Right Ascension 19h 53m 23.6020s, Declination +47° 29′ 28.436″. With an apparent visual magnitude of 15.456, this star is too faint to be seen with the naked eye. It is a solar analog, having a close mass, radius, and temperature as the Sun. Currently the age of the star has not been determined due to its 2780 light-year distance. As of 2016 no Jovian exoplanets of 0.9–1.4 MJ have been found at a distance of 5 AU.

    <span class="mw-page-title-main">KOI-256</span> Double star in the constellation Cygnus

    KOI-256 is a double star located in the constellation Cygnus approximately 575 light-years (176 pc) from Earth. While observations by the Kepler spacecraft suggested the system contained a gas giant exoplanet orbiting a red dwarf, later studies determined that KOI-256 was a binary system composed of the red dwarf orbiting a white dwarf.

    Kepler-25c is an exoplanet orbiting the star Kepler-25, located in the constellation Lyra. The planet was first detected as a candidate extrasolar planet by the Kepler space telescope in 2011. It was confirmed, in 2012, by Jason Steffen and collaborators using transit-timing variations obtained by the Kepler Space Telescope. It orbits its parent star at only 0.110 astronomical units away, and at its distance it completes an orbit once every 12.7 days.

    Kepler-13 or KOI-13 is a stellar triple star system consisting of Kepler-13A, around which an orbiting hot Jupiter exoplanet was discovered with the Kepler spacecraft in 2011, and Kepler-13B a common proper motion companion star which has an additional star orbiting it.

    K2-24 is a metal-rich G3-type main sequence star larger and more massive than the Sun, located 560 light-years away in the constellation Scorpius. Two confirmed transiting exoplanets are known to orbit this star. An attempt to detect stellar companions using adaptive optics imaging at the Keck telescope was negative however later observations using lucky imaging at the Danish 1.54 m telescope at La Silla Observatory detected a possible companion at 3.8 arcseconds distance from K2-24. This candidate companion being over 8 magnitudes fainter than K2-24 and with a color temperature of 5400 Kelvin, is inconsistent with a bound main sequence companion.

    References

    1. 1 2 3 Steffen, Jason H.; et al. (2012). "Transit timing observations from Kepler - III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations". Monthly Notices of the Royal Astronomical Society. 421 (3): 2342–2354. arXiv: 1201.5412 . Bibcode: 2012MNRAS.421.2342S . doi: 10.1111/j.1365-2966.2012.20467.x .
    2. "Kepler-25b". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2019-10-05.
    3. 1 2 Mills, Sean M.; et al. (2019). "Long-period Giant Companions to Three Compact, Multiplanet Systems". The Astronomical Journal. 157 (4). 145. arXiv: 1903.07186 . Bibcode:2019AJ....157..145M. doi: 10.3847/1538-3881/ab0899 . S2CID   119197547.
    4. Roman, Nancy G. (1987). "Identification of a Constellation From a Position". Publications of the Astronomical Society of the Pacific. 99 (617): 695–699. Bibcode:1987PASP...99..695R. doi: 10.1086/132034 . Vizier query form
    5. Borucki, William J.; et al. (2011). "Characteristics of Planetary Candidates Observed by Kepler. II. Analysis of the First Four Months of Data". The Astrophysical Journal. 736 (1). 19. arXiv: 1102.0541 . Bibcode: 2011ApJ...736...19B . doi: 10.1088/0004-637X/736/1/19 .