Discovery | |
---|---|
Discovery date | 2 February 2011 [1] |
Transit (Kepler Mission) [1] | |
Orbital characteristics | |
0.462 AU (69,100,000 km) [2] | |
118.37774 [2] d | |
Inclination | 89.8 [2] |
Star | Kepler-11 (KOI-157) |
Physical characteristics | |
3.66 (± 0.35) [3] R🜨 | |
Mass | <25 [4] ME |
Temperature | 400 K (127 °C; 260 °F) [2] |
Kepler-11g is an exoplanet discovered in the orbit of the sunlike star Kepler-11 by the Kepler space telescope, a NASA satellite tasked with searching for terrestrial planets. Kepler-11g is the outermost of the star's six planets. The planet orbits at a distance of nearly half the mean distance between Earth and the Sun. It completes an orbit every 118 days, placing it much further from its star than the system's inner five planets. Its estimated radius is a little over three times that of Earth, i.e. comparable to Neptune's size. Kepler-11g's distance from the inner planets made its confirmation more difficult than that of the inner planets, as scientists had to work to exhaustively disprove all reasonable alternatives before Kepler-11g could be confirmed. [3] The planet's discovery, along with that of the other Kepler-11 planets, was announced on February 2, 2011. According to NASA, the Kepler-11 planets form the flattest and most compact system yet discovered. [5]
Kepler-11 was originally called KOI-157 when NASA's Kepler spacecraft flagged the star for possible transit events, which exhibit tiny and roughly periodic decreases in the star's brightness are measured as it passes in front of its star as seen from Earth. [2] Kepler-11's name is incorporated into Kepler-11g's name because it is the host star. As Kepler-11g and its five sister planets were discovered and announced at the same time, its planets were sorted alphabetically by distance from the host star, starting with the letter b. Because Kepler-11g was the furthest of the six, it was given the designation "g."
The Kepler team's scientists conducted follow-up observations to confirm or reject the planetary nature of the detected object. [5] To do so, they used the Keck 1 telescope at the W. M. Keck Observatory in Hawaii; the Shane and Hale telescopes in California; telescopes at the WIYN (including MMT) and Whipple observatories in Arizona; Nordic Optical Telescope in the Canary Islands; the Hobby-Eberly and Harlan J. Smith telescopes in Texas; and NASA's Spitzer Space Telescope. [5] Because Kepler-11g orbits its star at a far greater distance than the inner five planets, fewer transits were observed, and radial velocity (the observation of a Doppler effect) interactions could not be easily discerned. As with the discovery of Kepler-9d, the Kepler team ran the information through numerous models to see if Kepler-11g's light curve could fit the profile of some other object, including an eclipsing binary star in the background that may have contaminated the data. The probability that Kepler-11g is not a planet but instead a false positive was determined to be 0.18%, effectively confirming its existence. [3]
Kepler-11g, along with its five sister planets, were announced at a NASA press conference on February 2, 2011. The findings were published in the journal Nature a day later. [1]
Kepler-11 is a G-type star in the Cygnus constellation. It is located approximately 659 parsecs away.Kepler-11 has an apparent magnitude of 14.2, and thus cannot be seen with the naked eye. [2]
Kepler-11g, the sixth planet of six from its star, its mass is estimated to be at most 25 times that of Earth. [4] Its exact mass could not be determined through transit observations because, while gravitational interactions of Kepler-11's five inner planets were used to determine their masses, Kepler-11g's comparatively large distance prevented it from affecting, or being affected by, the other five planets. [1] As a result, only an upper limit can be placed on the mass, which is based on the fact that if it were above this limit, gravitational effects on the other planets would be observed. [3] Nonetheless, tighter constraints were placed on Kepler-11g's mass by formation and evolution calculations, which indicated that the planet mass is not much greater than about 7 ME. [6]
Its radius was measured to be 3.33 times that of Earth, somewhat smaller than Neptune's radius. According to formation models, the planet has a gaseous envelope of light elements comprising about 10% of its mass. [6] Kepler-11g has an estimated surface equilibrium temperature of 400 K, over 1.5 times (50% higher) that of Earth's equilibrium temperature. Kepler-11g orbits Kepler-11 every 118.37774 days (over 2.5 times that of the fifth planet from Kepler-11, Kepler-11f) at a distance of 0.462 AU, almost half of the distance from which Earth orbits the Sun. [1] Its eccentricity is unknown. In comparison, planet Mercury orbits the Sun every 87.97 days at a distance of 0.387 AU. [7] With an orbital inclination of 89.8°, Kepler-11g is seen almost edge-on with respect to Earth. [2]
Temperature comparisons | Venus | Earth | Kepler-11g | Mars |
Global Equilibrium Temperature | 307 K 34 °C 93 °F | 255 K −18 °C −0.4 °F | 400 K 127 °C 260.6 °F | 206 K −67 °C −88.6 °F |
+ Venus' GHG effect | 737 K 464 °C 867 °F | |||
+ Earth's GHG effect | 288 K 15 °C 59 °F | |||
+ Mars' GHG effect | 210 K −63 °C −81 °F | |||
Tidally locked | Almost | No | unknown | No |
Global Bond Albedo | 0.9 | 0.29 | unknown | 0.25 |
Refs. [8] [9] [10] [11] |
An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not then recognized as such. The first confirmation of the detection occurred in 1992. A different planet, first detected in 1988, was confirmed in 2003. According to statistics from the NASA Exoplanet Archive, As of 21 August 2024, there are 5,747 confirmed exoplanets in 4,289 planetary systems, with 962 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and to give more insight into their traits, such as their composition, environmental conditions, and potential for life.
A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.
A hot Neptune is a type of giant planet with a mass similar to that of Neptune or Uranus orbiting close to its star, normally within less than 1 AU. The first hot Neptune to be discovered with certainty was Gliese 436 b (Awohali) in 2007, an exoplanet about 33 light years away. Recent observations have revealed a larger potential population of hot Neptunes in the Milky Way than was previously thought. Hot Neptunes may have formed either in situ or ex situ.
Kepler-4b, initially known as KOI 7.01, is an extrasolar planet first detected as a transit by the Kepler spacecraft. Its radius and mass are similar to that of Neptune; however, due to its proximity to its host star, it is substantially hotter than any planet in the Solar System. The planet's discovery was announced on January 4, 2010, in Washington, D.C., along with four other planets that were initially detected by the Kepler spacecraft and subsequently confirmed by telescopes at the W.M. Keck Observatory.
Transit-timing variation is a method for detecting exoplanets by observing variations in the timing of a transit. This provides an extremely sensitive method capable of detecting additional planets in the system with masses potentially as small as that of Earth. In tightly packed planetary systems, the gravitational pull of the planets among themselves causes one planet to accelerate and another planet to decelerate along its orbit. The acceleration causes the orbital period of each planet to change. Detecting this effect by measuring the change is known as transit-timing variations. "Timing variation" asks whether the transit occurs with strict periodicity or if there's a variation.
Kepler-11, also designated as 2MASS J19482762+4154328, is a Sun-like star slightly larger than the Sun in the constellation Cygnus, located some 2,110 light years from Earth. It is located within the field of vision of the Kepler space telescope, the satellite that NASA's Kepler Mission uses to detect planets that may be transiting their stars. Announced on February 2, 2011, the star system is among the most compact and flattest systems yet discovered. It is the first discovered case of a star system with six transiting planets. All discovered planets are larger than Earth, with the larger ones being about Neptune's size.
Kepler-11b is an exoplanet discovered around the star Kepler-11 by the Kepler space telescope, a NASA-led mission to discover Earth-like planets. Kepler-11b is less than about three times as massive and twice as large as Earth, but it has a lower density, and is thus most likely not of Earth-like composition. Kepler-11b is the hottest of the six planets in the Kepler-11 system, and orbits more closely to Kepler-11 than the other planets in the system. Kepler-11b, along with its five counterparts, form the first discovered planetary system with more than three transiting planets—the most densely packed known planetary system. The system is also the flattest known planetary system. The discovery of this planet and its five sister planets was announced on February 2, 2011, after follow-up investigations.
Kepler-11c is an exoplanet discovered in the orbit of the Sun-like star Kepler-11 by the Kepler space telescope, a NASA telescope aiming to discover Earth-like planets. It is the second planet from its star, and is most likely a water planet with a thin hydrogen–helium atmosphere. Kepler-11c orbits Kepler-11 every 10 days, and has an estimated density twice that of pure water. It is estimated to have a mass thirteen times that of Earth and a radius three times that of Earth. Kepler-11c and its five sister planets form the first discovered system with more than three transiting planets. The Kepler-11 system also holds the record of being the most compact and the flattest system discovered. Kepler-11c and the other Kepler-11 planets were announced to the public on February 2, 2011, and was published in Nature a day later.
Kepler-11d is an exoplanet discovered in the orbit of the sun-like star Kepler-11. It is named for the telescope that discovered it, a NASA spacecraft named Kepler that is designed to detect Earth-like planets by measuring small dips in the brightness of their host stars as the planets cross in front. This process, known as the transit method, was used to note the presence of six planets in orbit around Kepler-11, of which Kepler-11d is the third from its star. Kepler-11d orbits Kepler-11 well within the orbit of Mercury approximately every 23 days. The planet is approximately six times more massive than the Earth, and has a radius that is three and a half times larger than that of Earth's. It is, however, far hotter than Earth is. Its low density, comparable to that of Saturn, suggests that Kepler-11d has a large hydrogen–helium atmosphere. Kepler-11d was announced with its five sister planets on February 2, 2011 after extensive follow-up studies.
Kepler-11e is an exoplanet discovered in the orbit of the sunlike star Kepler-11. It is the fourth of six planets around Kepler-11 discovered by NASA's Kepler space telescope. Kepler-11e was found by using the transit method, in which the dimming effect that a planet causes as it crosses in front of its star is measured. Kepler-11e is most likely a gas giant like Neptune, having a density that is less than that of Saturn, the least dense planet in the Solar System. Its low density can probably be attributed to a large hydrogen and helium atmosphere. Kepler-11e has a mass eight times of Earth's mass and a radius 4.5 times that of Earth. The planet orbits its star every 31 days in an ellipse that would fit within the orbit of Mercury. Kepler-11e was announced on February 2, 2011 with its five sister planets after it was confirmed by several observatories.
Kepler-11f is an exoplanet discovered in the orbit of the Sun-like star Kepler-11 by NASA's Kepler space telescope, which searches for planets that transit their host stars. Kepler-11f is the fifth planet from its star, orbiting one quarter of the distance of the Earth from the Sun every 47 days. It is the furthest of the first five planets in the system. Kepler-11f is the least massive of Kepler-11's six planets, at nearly twice the mass of Earth; it is about 2.6 times the radius of Earth. Along with planets d and e and unlike the two inner planets in the system, Kepler-11f has a density lower than that of water and comparable to that of Saturn. This suggests that Kepler-11f has a significant hydrogen–helium atmosphere. The Kepler-11 planets constitute the first system discovered with more than three transiting planets. Kepler-11f was announced to the public on February 2, 2011, after follow-up investigations at several observatories. Analysis of the planets and study results were published the next day in the journal Nature.
Kepler-9d is a planet in orbit around the Sun-like star Kepler-9. Initially discovered by Kepler space telescope, a terrestrial planet-searching satellite built and operated by NASA, Kepler-9d is most likely a Super-Earth, with an estimated radius approximately 60% larger than that of Earth's, although its exact mass cannot be determined. Kepler-9d orbits Kepler-9 every 1.56 days at a distance of .0273 AU from its star, an extremely close distance. Although Kepler-9d is the closest planet to its star in its system, it is named Kepler-9d instead of Kepler-9b because two gas giants, Kepler-9b and Kepler-9c, were confirmed first. The original studies into the system first suggested that Kepler-9d might be a planet, but a follow-up investigation made by the Kepler team later confirmed that it was; the confirmation of Kepler-9d as a planet was made public with the team's paper, which was published in the Astrophysical Journal on January 1, 2011. The team used telescopes at the W.M. Keck Observatory in Hawaii to follow up on the Kepler space telescope's initial discovery.
A Kepler object of interest (KOI) is a star observed by the Kepler space telescope that is suspected of hosting one or more transiting planets. KOIs come from a master list of 150,000 stars, which itself is generated from the Kepler Input Catalog (KIC). A KOI shows a periodic dimming, indicative of an unseen planet passing between the star and Earth, eclipsing part of the star. However, such an observed dimming is not a guarantee of a transiting planet, because other astronomical objects—such as an eclipsing binary in the background—can mimic a transit signal. For this reason, the majority of KOIs are as yet not confirmed transiting planet systems.
Kepler-22b is an exoplanet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 640 light-years from Earth in the constellation of Cygnus. It was discovered by NASA's Kepler Space Telescope in December 2011 and was the first known transiting planet to orbit within the habitable zone of a Sun-like star, where liquid water could exist on the planet's surface. Kepler-22 is too dim to be seen with the naked eye.
Kepler-47 is a binary star system in the constellation Cygnus located about 3,420 light-years away from Earth. The stars have three exoplanets, all of which orbit both stars at the same time, making this a circumbinary system. The first two planets announced are designated Kepler-47b, and Kepler-47c, and the third, later discovery is Kepler-47d. Kepler-47 is the first circumbinary multi-planet system discovered by the Kepler mission. The outermost of the planets is a gas giant orbiting within the habitable zone of the stars. Because most stars are binary, the discovery that multi-planet systems can form in such a system has impacted previous theories of planetary formation.
PH1b, or by its NASA designation Kepler-64b, is an extrasolar planet found in a circumbinary orbit in the quadruple star system Kepler-64. The planet was discovered by two amateur astronomers from the Planet Hunters project of amateur astronomers using data from the Kepler space telescope with assistance of a Yale University team of international astronomers. The discovery was announced on 15 October 2012. It is the first known transiting planet in a quadruple star system, first known circumbinary planet in a quadruple star system, and the first planet in a quadruple star system found. It was the first confirmed planet discovered by PlanetHunters.org. An independent and nearly simultaneous detection was also reported from a revision of Kepler space telescope data using a transit detection algorithm.
Kepler-80, also known as KOI-500, is a red dwarf star of the spectral type M0V. This stellar classification places Kepler-80 among the very common, cool, class M stars that are still within their main evolutionary stage, known as the main sequence. Kepler-80, like other red dwarf stars, is smaller than the Sun, and it has both radius, mass, temperatures, and luminosity lower than that of our own star. Kepler-80 is found approximately 1,223 light years from the Solar System, in the stellar constellation Cygnus, also known as the Swan.
Kepler-138, also known as KOI-314, is a red dwarf located in the constellation Lyra, 219 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets transiting their stars.
Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,206 light-years (370 pc) from Earth in the constellation of Lyra.
Kepler-56b (KOI-1241.02) is a hot Neptune—a class of exoplanets—located roughly 3,060 light-years away. It is somewhat larger than Neptune and orbits its parent star Kepler-56 and was discovered in 2013 by the Kepler Space Telescope.