UZ Fornacis

Last updated
UZ Fornacis
UZForLightCurve.png
A visual band light curve for UZ Fornacis, adapted from Dai et al. (2010) [1]
Observation data
Epoch J2000        Equinox J2000
Constellation Fornax
Right ascension 03h 35m 28.65156s [2]
Declination −25° 44 21.7656 [2]
Apparent magnitude  (V)17.0 - 20.5 [3]
Characteristics
Spectral type D + M4.5V [4]
Variable type AM Her + eclipses [5]
Astrometry
Radial velocity (Rv)150 [6]  km/s
Proper motion (μ)RA: 18.137 [2]   mas/yr
Dec.: 1.470 [2]   mas/yr
Parallax (π)4.1736 ± 0.0742  mas [2]
Distance 780 ± 10  ly
(240 ± 4  pc)
Orbit [7]
Period (P)0.087865437  d (126.526229  min)
Semi-major axis (a)3.67×10−3  AU (5.49×105  km)
Inclination (i)81°
Details [8]
White dwarf
Mass 0.71  M
Radius 0.011  R
M dwarf
Mass 0.14  M
Radius 0.20  R
Other designations
EXO 033319-2554.2 [6]
Database references
SIMBAD data

UZ Fornacis (abbreviated as UZ For) is a binary star in the constellation of Fornax. It appears exceedingly faint with a maximum apparent magnitude 17.0. [3] Its distance, as measured by Gaia using the parallax method, is about 780 light-years (240 parsecs). [2]

Contents

The system consists of two stars, a white dwarf and a red dwarf, in close orbit around each other. It is hypothesized that there are also two planets orbiting the central stars. [4]

Nomenclature

The system is most commonly referred to as UZ Fornacis, which is its variable star designation. The General Catalogue of Variable Stars describes it as "E+XM", meaning it is an eclipsing binary system consisting of a low-mass star with an X-ray-emitting companion. [9] In the past the system has also been referred to using the designation EXO 033319–2554.2, which refers to its coordinates on the celestial sphere, as well as the EXOSAT satellite that detected it. [6]

Overview

UZ Fornacis is a cataclysmic variable. The two stars, a white dwarf and red dwarf, orbit each other every 127 minutes. [7] The stars' orbit is inclined about 81 degrees away from the plane-of-sky, so the system eclipses. The eclipsing nature of this system was first discovered in 1987. [10] At the time, it was the 14th AM Herculis star known and only the third system known to eclipse. [11]

In systems like UZ Fornacis, matter is siphoned off the red dwarf and towards the white dwarf. However, unlike typical cataclysmic variable where this matter forms an accretion disk, the white dwarf is highly magnetic and has a strong magnetic field. This magnetic field channels the matter into loops that eventually accrete onto the white dwarf. When this happens, the matter emits cyclotron radiation and soft X-rays. [7] Due to the activity of the red dwarf, sometimes more mass gets transferred and X-ray flare-ups occur. [12]

Matter flows onto a spot on the white dwarf, at a rate of 1×10−4 to 1 grams per square centimeter per second. [13] The white dwarf's magnetism also locks its rotation so it matches the orbit. [13]

Variability

The brightness of UZ Fornacis varies rapidly and somewhat unpredictably. The two stars in the system eclipse each other regularly. The eclipses last for about 380 s, with the initial drop in brightness and return to maximum brightness each taking about 3 s. The eclipse light curves do not all have the same shape, some being more or less flat-bottomed while others show a smooth variation in brightness, and some are asymmetrical. The times of the eclipses vary, possibly due to substellar companions. [4] Outside of the eclipses, the brightness varies during the orbit depending on the visibility of an accretion spot on the white dwarf. [14]

The brightness also varies over a period of years due to differences in the rate of accretion onto the white dwarf from the red dwarf. This can generally be seen as a bright state and a faint state, although the magnitudes of each state vary. For example, UZ Fornacis has been observed between magnitudes 15.9 and 16.75 at different times in the bright state. [15] The system also shows rapid "flickering" on a timescale of minutes, common in cataclysmic variable systems. [4]

Possible planetary system

Investigations in 2010 and 2011 found that the orbital period of the two stars in UZ Fornacis varied cyclically. Researchers attributed this to two possible gas giant sized planets around the two stars, perturbing their orbits and causing the orbital period to vary. [16]

As of 2019, there is not enough information to explain all of the period variations, [4] since the planets would have to be in eccentric orbits to fit the data, and that would cause the orbits to be dynamically unstable. It is possible that there are even more planets causing additional perturbation, or some physical effect such as the Applegate mechanism is responsible for the eclipse timing variations. [4]

The UZ Fornacis planetary system [4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
c(unconfirmed)10.00 MJ 5.753550.69
d(unconfirmed)3.22 MJ 3.021240.45

Related Research Articles

<span class="mw-page-title-main">EF Eridani</span> Star in the constellation Eridanus

EF Eridani is a variable star of the type known as polars, AM Herculis stars, or magnetic cataclysmic variable stars. Historically it has varied between apparent magnitudes 14.5 and 17.3, although since 1995 it has generally remained at the lower limit. The star system consists of a white dwarf with a substellar-mass former star in orbit.

<span class="mw-page-title-main">DQ Herculis</span> Nova in the constellation Hercules

DQ Herculis, or Nova Herculis 1934, was a slow, bright nova occurring in the northern constellation of Hercules in December 1934. This cataclysmic variable star was discovered on 13 December 1934 by J. P. M. Prentice from Stowmarket, Suffolk. It reached peak brightness on 22 December 1934 with an apparent magnitude of 1.5. The nova remained visible to the naked eye for several months.

<span class="mw-page-title-main">V838 Herculis</span> 1991 Nova seen in the constellation Hercules

V838 Herculis, also known as Nova Herculis 1991, was a nova which occurred in the constellation Hercules in 1991. It was discovered by George Alcock of Yaxley, Cambridgeshire, England at 4:35 UT on the morning of 25 March 1991. He found it with 10×50 binoculars, and on that morning its apparent visual magnitude was 5. Palomar Sky Survey plates showed that before the outburst, the star was at photographic magnitude 20.6 and 18.25.

<span class="mw-page-title-main">Polar (star)</span> Highly magnetic type of cataclysmic variable binary star system

In astronomy, a polar is a highly magnetic type of cataclysmic variable (CV) binary star system, originally known as an AM Herculis star after the prototype member AM Herculis. Like other CVs, polars contain two stars: an accreting white dwarf (WD), and a low-mass donor star which is transferring mass to the WD as a result of the WD's gravitational pull, overflowing its Roche lobe. Polars are distinguished from other CVs by the presence of a very strong magnetic field in the WD. Typical magnetic field strengths of polar systems are 10 million to 80 million gauss. The WD in the polar AN Ursae Majoris has the strongest known magnetic field among cataclysmic variables, with a field strength of 230 million gauss.

<span class="mw-page-title-main">AM Herculis</span> Star in the constellation Hercules

AM Herculis is a binary variable star located in the constellation Hercules. This star, along with the star AN Ursae Majoris, is the prototype for a category of cataclysmic variable stars called polars, or AM Her type stars.

An AM Canum Venaticorum star, is a rare type of cataclysmic variable star named after their type star, AM Canum Venaticorum. In these hot blue binary variables, a white dwarf accretes hydrogen-poor matter from a compact companion star.

<span class="mw-page-title-main">EX Hydrae</span> Cataclysmic binary star system in the constellation Hydra

EX Hydrae is a variable star classified as an eclipsing intermediate polar-type cataclysmic variable, specifically of the DQ Herculis type. The system varies in apparent magnitude from 9.6 to 14. The system consists of a white dwarf primary and an M-type secondary, of masses of 0.4–0.7 M and 0.07–0.10 M respectively. The orbital period is 98.25696 minutes (0.068233846 days). The system is 65±11 parsecs distant, making EX Hya one of the closest cataclysmic variable stars. The cataclysmic outbursts appear to be caused by accretion of material from the M-star to the white dwarf.

<span class="mw-page-title-main">RX Andromedae</span> Cataclysmic variable star system in the constellation Andromeda

RX Andromedae is a variable star in the constellation of Andromeda. Although it is classified as a dwarf nova of the Z Camelopardalis (UGZ) type, it has shown low-luminosity periods typical of VY Sculptoris stars. However, for most of the time it varies from an apparent visual magnitude of 15.1 at minimum brightness to a magnitude of 10.2 at maximum brightness, with a period of approximately 13 days.

<span class="mw-page-title-main">NN Serpentis</span> Eclipsing post-common envelope binary star system in the constellation Serpens

NN Serpentis is an eclipsing post-common envelope binary system approximately 1670 light-years away. The system comprises an eclipsing white dwarf and red dwarf. The two stars orbit each other every 0.13 days.

<span class="mw-page-title-main">HU Aquarii</span> Star in the constellation Aquarius

HU Aquarii is an eclipsing binary system approximately 620 light-years away from the Sun, forming a cataclysmic variable of AM Herculis-type. The two stars orbit each other every 2.08 hours and the ultra-short binary system includes an eclipsing white dwarf and red dwarf.

<span class="mw-page-title-main">DP Leonis</span> Star system in the constellation Leo

DP Leonis is a binary star system in the equatorial constellation of Leo. It is a variable star that ranges in apparent visual magnitude from 17.5 down to 19. The system is located at a distance of approximately 990 light-years from the Sun based on parallax. It is a cataclysmic variable star of the AM Herculis-type also known as polars. The system comprises an eclipsing white dwarf and red dwarf in tight orbit and an extrasolar planet. This eclipsing variable was discovered by P. Biermann and associates in 1982 as the optical counterpart to the EINSTEIN X-ray source E1114+182.

<span class="mw-page-title-main">CE Gruis</span> Binary star system in the constellation Grus

CE Gruis is a faint binary star system in the constellation Grus. It is a variable star, with a B-band brightness that ranges from a peak magnitude of 17.4 down to a minimum of 19.5 over a period of 108.6 minutes. The system is composed of a white dwarf and donor star, locked into a close, synchronous orbit. In such systems, known as polars, material from the donor star does not form an accretion disc around the white dwarf because of its intense magnetic field, but rather streams directly onto it along columns.

<span class="mw-page-title-main">QS Telescopii</span> Binary star system in the constellation Telescopium

QS Telescopii is a faint, well-studied binary star system in the southern constellation Telescopium. It is composed of a white dwarf and main sequence donor star, locked into a close, circular orbit facing one another. Known as polars, material from the donor star does not form an accretion disk around the white dwarf, but rather streams directly onto it. This is due to the presence of the white dwarf's strong magnetic field. The pair undergo frequent shifts between a high and low accretion states, and it shifts between single and double accretion poles. The main pole is partially self-eclipsing.

SW Sextantis variable stars are a kind of cataclysmic variable star; they are double-star systems in which there is mass transfer from a red dwarf to a white dwarf forming a stable accretion disc around the latter. Unlike other non-magnetic cataclysmic variables, the emission lines from hydrogen and helium are not doubled, except briefly near phase 0.5.

<span class="mw-page-title-main">PX Andromedae</span> Star in the constellation Andromeda

PX Andromedae is an eclipsing cataclysmic variable star in the constellation Andromeda. It has been classified as a SW Sextantis variable, and its apparent visual magnitude varies between 14.04 and 17.

<span class="mw-page-title-main">V1315 Aquilae</span> Variable star in the constellation Aquila

V1315 Aquilae is a cataclysmic variable star in the north of the equatorial constellation of Aquila. It is in the sub-set of nova-like (NL) variables, specifically a SW Sextantis star. These were characterized as having non-magnetic white dwarfs – thus that do not undergo dwarf-nova bright luminations ("eruptions"). There is countering evidence for some magnetism. Being a SW Sextantis star, V1315 Aquilae has a high rate of mass transfer, so it is in steady-state accretion and in a constant state of outburst. It emits most of its light in the visible range, and this comes from the accretion disk. The eclipse depth is 1.8 mag. No description of the donor star is made.

<span class="mw-page-title-main">QZ Aurigae</span> Nova seen in 1964

QZ Aurigae, also known as Nova Aurigae 1964, was a nova which occurred in the constellation Auriga during 1964. It was discovered by Nicholas Sanduleak on an objective prism photographic plate taken at the Warner and Swasey Observatory on 4 November 1964. Examination of pre-discovery plates from Sonneberg Observatory showed that the eruption occurred in early February 1964, and it had a photographic magnitude of 6.0 on 14 February 1964. Its brightness declined in images taken after the 14th, suggesting that its peak brightness was above 6.0. It was probably visible to the naked eye for a short time.

<span class="mw-page-title-main">UX Ursae Majoris</span>

UX Ursae Majoris is an Algol type binary star system in the northern circumpolar constellation of Ursa Major. It is classified as a nova-like variable star similar to DQ Herculis, although no eruptions have been reported. Since its discovery in 1933, this system has been the subject of numerous studies attempting to determine its properties. The combined apparent visual magnitude of UX UMa ranges from 12.57 down to 14.15. The system is located at a distance of approximately 952 light years from the Sun based on parallax, and is drifting further away with a radial velocity of 112 km/s.

<span class="mw-page-title-main">QQ Vulpeculae</span> Variable star in the constellation Vulpecula

QQ Vulpeculae is a cataclysmic variable binary star system in the northern constellation of Vulpecula, abbreviated QQ Vul. It has a brightness that fluctuates around an apparent visual magnitude of 14.7, which is too faint to be viewed with the naked eye. The distance to this system is approximately 981 light years based on parallax measurements.

<span class="mw-page-title-main">DW Ursae Majoris</span> Variable star in the constellation Ursa Major

DW Ursae Majoris is an eclipsing binary star system in the northern circumpolar constellation of Ursa Major, abbreviated DW UMa. It is a cataclysmic variable of the SX Sextanis type, consisting of a compact white dwarf that is accreting matter from an orbiting companion star. The brightness of this source ranges from an apparent visual magnitude of 13.6 down to magnitude 18, which is too faint to be viewed with the naked eye. The distance to this system is approximately 1,920 light years based on parallax measurements.

References

  1. Dai, Z.-B.; Qian, S.-B.; Lajús, E. Fernández; Baume, G. L. (December 2010). "Orbital period analyses for two cataclysmic variables: UZ Fornacis and V348 Puppis inside the period gap". Monthly Notices of the Royal Astronomical Society. 409 (3): 1195–1202. arXiv: 1007.4070 . Bibcode:2010MNRAS.409.1195D. doi:10.1111/j.1365-2966.2010.17384.x. S2CID   119240135 . Retrieved 6 January 2022.
  2. 1 2 3 4 5 6 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics . 616. A1. arXiv: 1804.09365 . Bibcode: 2018A&A...616A...1G . doi: 10.1051/0004-6361/201833051 .
  3. 1 2 Downes, Ronald A.; Webbink, Ronald F.; Shara, Michael M.; Ritter, Hans; Kolb, Ulrich; Duerbeck, Hilmar W. (2001). "A Catalog and Atlas of Cataclysmic Variables: The Living Edition". Publications of the Astronomical Society of the Pacific. 113 (784): 764. arXiv: astro-ph/0102302 . Bibcode:2001PASP..113..764D. doi:10.1086/320802. S2CID   16285959.
  4. 1 2 3 4 5 6 7 Khangale, Z. N.; Potter, S. B.; Kotze, E. J.; Woudt, P. A.; Breytenbach, H. (2019). "High-speed photometry of the eclipsing polar UZ Fornacis". Astronomy & Astrophysics. 621: A31. arXiv: 1811.12724 . Bibcode:2019A&A...621A..31K. doi:10.1051/0004-6361/201834039. S2CID   119536216.
  5. "UZ Fornacis". International Variable Star Index. Retrieved 2020-03-27.
  6. 1 2 3 "V* UZ For". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 2020-03-26.
  7. 1 2 3 Kube, J.; Gänsicke, B. T.; Beuermann, K. (2000). "Eclipse mapping of the accretion stream in UZ Fornacis". Astronomy and Astrophysics. 356: 490. arXiv: astro-ph/9912442 . Bibcode:2000A&A...356..490K.
  8. Stockman, H. S.; Schmidt, Gary D. (1996). "Hubble Space Telescope Time-resolved Ultraviolet Spectroscopy of ST Leonis Minoris and UZ Fornacis: Resolving the Accretion Stream". The Astrophysical Journal. 468: 883. Bibcode:1996ApJ...468..883S. doi: 10.1086/177744 .
  9. Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007-2013)". VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S. 1. Bibcode:2009yCat....102025S.
  10. Beuermann, K.; Thomas, H. -C.; Schwope, A.; Bailey, J.; Ferrario, L.; Tuohy, I. R.; Wickramasinghe, D. T.; Hough, J. H. (1987). "IAUC 4517: EXO 033319-2554.2". International Astronomical Union Circular (4517): 1. Bibcode:1987IAUC.4517....1B.
  11. Berriman, Graham; Smith, Paul S. (1988). "Circular polarimetry of EXO 033319-2554.2 - A new eclipsing AM Herculis star". The Astrophysical Journal. 329: L97. Bibcode:1988ApJ...329L..97B. doi:10.1086/185185.
  12. Pandel, D.; Cordova, F. A. (2002). "XMM-Newton observes flaring in the polar UZ for during a low state". Monthly Notices of the Royal Astronomical Society. 336 (3): 1049–1055. arXiv: astro-ph/0207263 . Bibcode:2002MNRAS.336.1049P. doi:10.1046/j.1365-8711.2002.05846.x. S2CID   16538177.
  13. 1 2 Rousseau, T.; Fischer, A.; Beuermann, K.; Woelk, U. (1996). "Determination of mass flow rates in AM Herculis binaries. I. General method and application to UZ Fornacis". Astronomy and Astrophysics. 310: 526. Bibcode:1996A&A...310..526R.
  14. Bailey, Jeremy; Cropper, Mark (1991). "The eclipse light curves of UZ For". Monthly Notices of the Royal Astronomical Society. 253: 27–34. Bibcode:1991MNRAS.253...27B. doi: 10.1093/mnras/253.1.27 .
  15. Imamura, James N.; Steiman-Cameron, Thomas Y. (1998). "High-State Observations of the Eclipsing AM Herculis Object UZ Fornacis". The Astrophysical Journal. 501 (2): 830. Bibcode:1998ApJ...501..830I. doi: 10.1086/305822 .
  16. Potter, Stephen B.; Romero-Colmenero, Encarni; Ramsay, Gavin; Crawford, Steven; Gulbis, Amanda; Barway, Sudhanshu; Zietsman, Ewald; Kotze, Marissa; Buckley, David A. H.; o'Donoghue, Darragh; Siegmund, O. H. W.; McPhate, J.; Welsh, B. Y.; Vallerga, John (2011). "Possible detection of two giant extrasolar planets orbiting the eclipsing polar UZ Fornacis". Monthly Notices of the Royal Astronomical Society. 416 (3): 2202–2211. arXiv: 1106.1404 . Bibcode:2011MNRAS.416.2202P. doi:10.1111/j.1365-2966.2011.19198.x. S2CID   119184992.