Applegate mechanism

Last updated

The Applegate mechanism (Applegate's mechanism or Applegate effect) explains long term orbital period variations seen in certain eclipsing binaries. As a main sequence star goes through an activity cycle, the outer layers of the star are subject to a magnetic torque changing the distribution of angular momentum, resulting in a change in the star's oblateness. The orbit of the stars in the binary pair is gravitationally coupled to their shape changes, so that the period shows modulations (typically on the order of ∆P/P ~ 10−5) on the same time scale as the activity cycles (typically on the order of decades). [1]

Contents

Introduction

Careful timing of eclipsing binaries has shown that systems showing orbital period modulations on the order of ∆P/P ~ 10−5 over a period of decades are quite common. A striking example of such a system is Algol, for which the detailed observational record extends back over two centuries. Over this span of time, a graph of the time dependence of the difference between the observed times of eclipses versus the predicted times shows a feature (termed the "great inequality") with a full amplitude of 0.3 days and a recurrent time scale of centuries. Superimposed on this feature is a secondary modulation with a full amplitude of 0.06 days and a recurrent time scale of about 30 years. Orbital period modulations of similar amplitude are seen in other Algol binaries as well. [1]

Although recurrent, these period modulations do not follow a strictly regular cycle. Irregular recurrence rules out attempts to explain these period modulations as being due to apsidal precession or the presence of distant, unseen companions. Apsidal precession explanations also have the problem that they require an eccentric orbit, but the systems in which these modulations are observed often show orbits of little eccentricity. Furthermore, third body explanations have the issue that in many cases, a third body massive enough to produce the observed modulation should not have managed to escape optical detection, unless the third body were quite exotic. [2]

Another phenomenon observed in certain Algol binaries has been monotonic period increases. This is quite distinct from the far more common observations of alternating period increases and decreases explained by the Applegate mechanism. Monotonic period increases have been attributed to mass transfer, usually (but not always) from the less massive to the more massive star. [3]

Mechanism

The time scale and recurrence patterns of these orbital period modulations suggested to Matese and Whitmire (1983) a mechanism invoking changes in the quadrupole moment of one star with subsequent spin-orbit coupling. However, they could not provide any convincing explanation for what might cause such fluctuations in the quadrupole moment. [4]

Taking the Matese and Whitmire mechanism as a basis, Applegate argued that changes in the radius of gyration of one star could be related to magnetic activity cycles. [1] Supportive evidence for his hypothesis came from the observation that a large fraction of the late-type secondary stars of Algol binaries appear to be rapidly rotating convective stars, implying that they should be chromospherically active. Indeed, orbital period modulations are seen only in Algol-type binaries containing a late-type convective star. [3]

Given that gravitational quadrupole coupling is involved in producing orbital period changes, the question remained of how a magnetic field could induce such shape changes. Most models of the 1980s assumed that the magnetic field would deform the star by distorting it away from hydrostatic equilibrium. Marsh and Pringle (1990) demonstrated, however, that the energy required to produce such deformations would exceed the total energy output of the star. [5]

A star does not rotate as a solid body. The outer parts of a star contribute most to a star's quadrupole moment. Applegate proposed that as a star goes through its activity cycle, magnetic torques could cause a redistribution of angular momentum within a star. As a result, the rotational oblateness of the star will change, and this change would ultimately result in changing the orbital period via the Matese and Whitmire mechanism. Energy budget calculations indicate that the active star typically should be variable at the ΔL/L  0.1 level and should be differentially rotating at the ΔΩ/Ω  0.01 level. [1]

Applicability

The Applegate mechanism makes several testable predictions:

Tests of the above predictions have been supportive of the mechanism's validity, but not unambiguously so. [6] [7]

The Applegate effect provides a unified explanation for many (but not all) ephemeris curves for a wide class of binaries, and it may aid in the understanding of the dynamo activity seen in rapidly rotating stars. [8]

The Applegate mechanism has also been invoked to explain variations in the observed transit times of extrasolar planets, in addition to other possible effects such as tidal dissipation and the presence of other planetary bodies. [9]

However, there are many stars for which the Applegate mechanism is inadequate. For example, the orbital period variations in certain eclipsing post-common-envelope binaries are an order of magnitude larger than can be accommodated by the Applegate effect, with magnetic braking or a third body in a highly elliptical orbit providing the only known mechanisms able to explain the observed variation. [10] [11] [12]

Related Research Articles

<span class="mw-page-title-main">Algol</span> Eclipsing variable star in the constellation Perseus

Algol, designated Beta Persei, known colloquially as the Demon Star, is a bright multiple star in the constellation of Perseus and one of the first non-nova variable stars to be discovered.

<span class="mw-page-title-main">Binary star</span> System of two stars orbiting each other

A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in which case they are called visual binaries. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy or astrometry. If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other; these pairs are called eclipsing binaries, or, together with other binaries that change brightness as they orbit, photometric binaries.

<span class="mw-page-title-main">Variable star</span> Star whose brightness fluctuates, as seen from Earth

A variable star is a star whose brightness as seen from Earth changes with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:

<span class="mw-page-title-main">RS Canum Venaticorum variable</span>

An RS Canum Venaticorum variable is a type of variable star. The variable type consists of close binary stars having active chromospheres which can cause large stellar spots. These spots are believed to cause variations in their observed luminosity. Systems can exhibit variations on timescales of years due to variation in the spot surface coverage fraction, as well as periodic variations which are, in general, close to the orbital period of the binary system. Some systems exhibit variations in luminosity due to their being eclipsing binaries. Typical brightness fluctuation is around 0.2 magnitudes. They take their name from the star RS Canum Venaticorum.

<span class="mw-page-title-main">Algol variable</span> Class of eclipsing binary stars

Algol variables or Algol-type binaries are a class of eclipsing binary stars that are similar to the prototype member of this class, β Persei. An Algol binary is a system where both stars are near-spherical such that the timing of the start and end of the eclipses is well-defined. The primary is generally a main sequence star well within its Roche lobe. The secondary may also be a main sequence star, referred to as a detached binary or it may an evolved star filling its Roche lobe, referred to as a semidetached binary.

<span class="mw-page-title-main">QS Virginis</span> Eclipsing binary star in the constellation Virgo

QS Virginis is an eclipsing binary system approximately 163 light-years away from the Sun, forming a cataclysmic variable. The system comprises an eclipsing white dwarf and red dwarf that orbit each other every 3.37 hours.

<span class="mw-page-title-main">NSVS 14256825</span> Eclipsing binary star in the constellation Aquila

NSVS 14256825, also known as V1828 Aquilae, is an eclipsing binary system in the constellation of Aquila. The system comprises a subdwarf OB star and red dwarf star. The two stars orbit each other every 2.648976 hours. Based on the stellar parallax of the system, observed by Gaia, the system is located approximately 2,700 light-years away.

<span class="mw-page-title-main">TW Andromedae</span> Star in the constellation Andromeda

TW Andromedae is an eclipsing binary star, classified also as an Algol variable star, in the constellation Andromeda. Its brightness varies with a period of 4.12 days, and has a typical brightness of magnitude 8.98 but decreasing down to a magnitude of 11.04 during the main eclipse.

<span class="mw-page-title-main">XZ Andromedae</span> Binary star in the constellation Andromeda

XZ Andromedae is a binary star in the constellation Andromeda. Its maximum apparent visual magnitude is 9.91, but drops down to 12.45 every 1.357 days. Its variability matches the behaviour of Algol variable stars.

<span class="mw-page-title-main">AB Andromedae</span> Binary star in the Andromeda constellation

AB Andromedae is a binary star in the constellation Andromeda. Paul Guthnick and Richard Prager discovered that the star is an eclipsing binary in 1927. Its maximum apparent visual magnitude is 9.49 but shows a variation in brightness down to a magnitude of 10.46 in a periodic cycle of roughly 8 hours. The observed variability is typical of W Ursae Majoris variable stars, so the two stars in this system form a contact binary.

<span class="mw-page-title-main">UZ Fornacis</span> Binary star system in the constellation Fornax

UZ Fornacis is a binary star in the constellation of Fornax. It appears exceedingly faint with a maximum apparent magnitude 17.0. Its distance, as measured by Gaia using the parallax method, is about 780 light-years.

<span class="mw-page-title-main">RS Canum Venaticorum</span> Binary star in the constellation Canes Venatici

RS Canum Venaticorum is a binary star system in the northern constellation of Canes Venatici. It serves as the prototype to the class of RS Canum Venaticorum variables. The peak apparent visual magnitude of this system is below the level needed to observe it with the naked eye. It is located at a distance of approximately 443 light years from the Sun based on parallax, but is drifting closer with a net radial velocity of −14 km/s. Olin J. Eggen (1991) included this system as a member of the IC 2391 supercluster, but it was later excluded.

<span class="mw-page-title-main">AO Serpentis</span> Star in the constellation Serpens

AO Serpentis is an eclipsing binary star system in the Serpens Caput segment of the Serpens constellation. It is invisible to the naked eye with a typical apparent visual magnitude of 11.04. Variable star observers record a peak magnitude of 10.7, dropping to 12.0 during the primary eclipse and 10.8 from the secondary eclipse. The distance to this system is approximately 1,450 light years based on parallax measurements.

<span class="mw-page-title-main">TX Ursae Majoris</span> Eclipsing binary star system in the constellation of Ursa Major

TX Ursae Majoris is an eclipsing binary star system in the northern circumpolar constellation of Ursa Major. With a combined apparent visual magnitude of 6.97, the system is too faint to be readily viewed with the naked eye. The pair orbit each other with a period of 3.063 days in a circular orbit, with their orbital plane aligned close to the line of sight from the Earth. During the primary eclipse, the net brightness decreases by 1.74 magnitudes, while the secondary eclipse results in a drop of just 0.07 magnitude. TX UMa is located at a distance of approximately 780 light years from the Sun based on parallax measurements, but is drifting closer with a mean radial velocity of −13 km/s.

<span class="mw-page-title-main">SZ Piscium</span> Star system in the constellation Pisces

SZ Piscium is a suspected triple star system in the equatorial constellation of Pisces. The inner pair form a double-lined spectroscopic binary with an orbital period of 3.966 days. It is a detached Algol-type eclipsing binary of the RS Canum Venaticorum class with a subgiant component. The system is too faint to be readily visible to the naked eye with a combined apparent visual magnitude of 7.18. It is located at a distance of approximately 306 light years based on parallax measurements.

<span class="mw-page-title-main">V471 Tauri</span> Variable star in the constellation Taurus

V471 Tauri is an eclipsing variable star in the constellation of Taurus. The star has a visual magnitude of 9 which makes it impossible to see with the naked eye. It is around 155 light-years away from the Solar System.

<span class="mw-page-title-main">BH Virginis</span> Eclipsing binary star in the constellation Virgo

BH Virginis is a binary star system in the equatorial constellation of Virgo. With a typical apparent visual magnitude of 9.6, it is too faint to be visible to the naked eye. Based on parallax measurements, it is located at a distance of approximately 488 light years from the Sun. The system is drifting closer with a net radial velocity of −23 km/s.

<span class="mw-page-title-main">UV Piscium</span> Binary star system in the Pisces constellation

UV Piscium is a binary star system in the constellation of Pisces. With a peak apparent visual magnitude of 8.98, it is too faint to be visible to the naked eye. This is an eclipsing binary system that decreases to magnitude 10.05 during the primary eclipse, then to magnitude 9.54 with the secondary eclipse. It is located at a distance of 232 light years from the Sun based on parallax measurements, and is receding with a radial velocity of 6.5 km/s. The position of this star near the ecliptic means it is subject to lunar occultation.

<span class="mw-page-title-main">VV Ursae Majoris</span> Variable star system in the constellation Ursa Major

VV Ursae Majoris is a binary star system in the northern circumpolar constellation of Ursa Major, abbreviated VV UMa. It is a variable star system with a brightness that cycles around an apparent visual magnitude of 10.19, making it too faint to be visible to the naked eye. The system is located at a distance of approximately 1,500 light years based on parallax measurements.

<span class="mw-page-title-main">RT Persei</span> Star system in the constellation Perseus

RT Persei is a variable star system in the northern constellation of Perseus, abbreviated RT Per. It is an eclipsing binary system with an orbital period of 0.84940032 d (20.386 h). At peak brightness the system has an apparent visual magnitude of 10.46, which is too faint to be viewed with the naked eye. During the eclipse of the primary this decreases to magnitude 11.74, then to magnitude 10.67 with the secondary eclipse. The distance to this system is approximately 628 light years based on parallax measurements. It is drifting closer with a heliocentric radial velocity of about −12 km/s.

References

  1. 1 2 3 4 5 Applegate, James H. (1992). "A mechanism for orbital period modulation in close binaries". Astrophysical Journal, Part 1. 385: 621–629. Bibcode:1992ApJ...385..621A. doi: 10.1086/170967 .
  2. Van Buren, D. (1986). "Comment on the three-body theory for period changes in RS CVn systems". The Astronomical Journal. 92: 136–138. Bibcode:1986AJ.....92..136V. doi:10.1086/114145.
  3. 1 2 Hall, Douglas S. (1989). "The relation between RS CVn and Algol". Space Science Reviews. 50 (1–2): 219–233. Bibcode:1989SSRv...50..219H. doi:10.1007/BF00215932. S2CID   125947929.
  4. Matese, J. J.; Whitmire, D. P. (1983). "Alternate period changes in close binary systems". Astronomy and Astrophysics. 117 (2): L7–L9. Bibcode:1983A&A...117L...7M.
  5. Marsh, T. R.; Pringle, J. E. (1990). "Changes in the orbital periods of close binary stars". Astrophysical Journal, Part 1. 365: 677–680. Bibcode:1990ApJ...365..677M. doi:10.1086/169521.
  6. Maceroni, Carla (1999). "Angular Momentum Evolution in Close Late-type Binaries" (PDF). Turkish Journal of Physics . 23 (2): 289–300. Bibcode:1999TJPh...23..289M . Retrieved 24 May 2015.
  7. Frasca, A.; Lanza, A. F. (2005). "Orbital period variation in close binaries from radial velocity data and magnetic activity cycles". Astronomy and Astrophysics. 429: 309–316. Bibcode:2005A&A...429..309F. doi: 10.1051/0004-6361:20041007 .
  8. Hilditch, R. W. (2001). An Introduction to Close Binary Stars. Cambridge University Press. pp. 175–176. ISBN   978-0521798006 . Retrieved 24 May 2015.
  9. Watson, C. A.; Marsh, T. R. (2010). "Orbital period variations of hot Jupiters caused by the Applegate effect". Monthly Notices of the Royal Astronomical Society. 405 (3): 2037. arXiv: 1003.0340 . Bibcode:2010MNRAS.405.2037W. doi: 10.1111/j.1365-2966.2010.16602.x . S2CID   111386415.
  10. Völschow, M.; Schleicher, D. R. G.; Perdelwitz, V.; Banerjee, R. (2016). "Eclipsing time variations in close binary systems: Planetary hypothesis vs. Applegate mechanism". Astronomy and Astrophysics . 587 (34): A34. arXiv: 1512.01960 . Bibcode:2016A&A...587A..34V. doi:10.1051/0004-6361/201527333. S2CID   53403357.
  11. Parsons, S. G.; Marsh, T. R.; Copperwheat, C. M.; Dhillon, V. S.; Littlefair, S. P.; Hickman, R. D. G.; Maxted, P. F. L.; Gänsicke, B. T.; Unda-Sanzana, E.; Colque, J. P.; Barraza, N.; Sánchez, N.; Monard, L. A. G. (2010). "Orbital period variations in eclipsing post-common-envelope binaries". Monthly Notices of the Royal Astronomical Society. 407 (4): 2362. arXiv: 1005.3958 . Bibcode:2010MNRAS.407.2362P. doi: 10.1111/j.1365-2966.2010.17063.x . S2CID   96441672.
  12. Schwarz; et al. (2009). "Hunting high and low: XMM monitoring of the eclipsing polar HU Aquarii". Astronomy and Astrophysics . 496 (3): 833–840. arXiv: 0901.4902 . Bibcode:2009A&A...496..833S. doi:10.1051/0004-6361/200811485. S2CID   14243402.