Alice (spacecraft instrument)

Last updated
Infrographic of Alice data from its 2015 encounter with Pluto on New Horizons PIA19716 Alice Solar Occultation (cropped).jpg
Infrographic of Alice data from its 2015 encounter with Pluto on New Horizons

Alice is an ultraviolet imaging spectrometer, with one used on the New Horizons spacecraft, and another on the Rosetta spacecraft. [1] Alice is a small telescope with a spectrograph and a special detector with 32 pixels each with 1024 spectral channels detecting ultraviolet light. [2] The instrument has a mass of 4.4 kg and draws 4.4 watts of power. Its primary role is to determine the relative concentrations of various elements and isotopes in Pluto's atmosphere. [3]

Contents

Alice has an off-axis telescope which sends light to a Rowland-circle spectrograph, and the instrument has a field of view of 6 degrees. [4] It is designed to capture airglow and solar occultation at the same time, and has two inputs to allow this. [4]

Overview

Alice uses an array of potassium bromide and caesium iodide type of photocathodes. It detects in the extreme and far ultraviolet spectrum, from 700–2,050 Å (70–205 nm) wavelengths of light. [5] [6]

Alice is intended, among its capabilities, to detect ultraviolet signatures of noble (aka inert) gases including helium, neon, argon, and krypton. [7] Alice should also be able to detect water, carbon monoxide, and carbon dioxide in the ultraviolet. [7] Although the instrument was designed to study Pluto's atmosphere, ALICE will also be tasked with studying Pluto's moon Charon, in addition to various Kuiper-belt objects. [3]

ALICE was built and operated by the Southwest Research Institute for NASA's Jet Propulsion Laboratory. [8] The instrument is powered using a radiation hardened version of an Intel 8052 micro-processor. The instrument uses 32KB of programmable read only memory (PROM), 128 KB of EEPROM, and 32KB of SRAM. The command and data handling electronics are contained across four circuit boards which sit behind the detectors. [9]

ALICE operates in two separate data modes; Pixel List mode (PLM) and Histogram mode (HM). In Pixel List mode, the number of photons/second are recorded. In Histogram mode, the sensor array collects data/photons for a defined period of time. This data is then read as a 2D image. Furthermore, whilst the image is being read from the first memory bank, a second exposure can be started using the secondary memory bank. [3] An advantage of utilising two different data modes is that the method of data collection can be tailored to the scientific goals. PLM provides time resolution, where as HM consistently requires same amount of memory, regardless of exposure length. [3]

Naming

Alice is not an acronym. The name was chosen by principal investigator Alan Stern for personal reasons. [7]

Alice on New Horizons

Alice installed on New Horizons spacecraft Alice ultraviolet imaging spectrometer on New Horizons.jpeg
Alice installed on New Horizons spacecraft

In August 2018, NASA confirmed, based on results by Alice on the New Horizons spacecraft, the detection of a "hydrogen wall" at the outer edges of the Solar System that was first detected in 1992 by the two Voyager spacecraft which have detected a surplus of ultraviolet light determined to be coming from hydrogen. [10] [11]

The New Horizons version of Alice uses an average power of 4.4 watts and weighs 4.5 kg (9.9 pounds). [2]

Examples
NameWavelength BandpassAperture(s)
Human eye400–700 nm (approx.) [12] 0.6 cm [13]
LORRI350 – 850 nm20.8 cm
Alice70-205 nm [5] [6] (two; 40 x 40 mm2
1 mm [14]

Alice on Rosetta

On Rosetta, a mission to a comet, Alice performed ultraviolet spectroscopy to search and quantify the noble gas content in the comet nucleus. [5] [6]

On Rosetta it is a 3.1 kg (6.8 lb) instrument which uses 2.9 watts. [5] [6]

See also

Related Research Articles

<i>Deep Space 1</i> NASA spacecraft launched in 1998

Deep Space 1 (DS1) was a NASA technology demonstration spacecraft which flew by an asteroid and a comet. It was part of the New Millennium Program, dedicated to testing advanced technologies.

<i>Rosetta</i> (spacecraft) European orbiter sent to study a comet

Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P). During its journey to the comet, the spacecraft performed flybys of Earth, Mars, and the asteroids 21 Lutetia and 2867 Šteins. It was launched as the third cornerstone mission of the ESA's Horizon 2000 programme, after SOHO / Cluster and XMM-Newton.

<i>New Horizons</i> NASA probe that visited Pluto and Kuiper belt object 486958 Arrokoth

New Horizons is an interplanetary space probe launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern, the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow, which became a mission to 486958 Arrokoth. It is the fifth space probe to achieve the escape velocity needed to leave the Solar System.

<i>Pluto Kuiper Express</i> Cancelled 1998 NASA mission to Pluto

Pluto Kuiper Express was an interplanetary space probe that was proposed by Jet Propulsion Laboratory (JPL) scientists and engineers and under development by NASA. The spacecraft was intended to be launched to study Pluto and its moon Charon, along with one or more other Kuiper belt objects (KBOs). The proposal was the third of its kind, after the Pluto 350 and a proposal to send a Mariner Mark II spacecraft to Pluto.

<i>MESSENGER</i> Seventh mission of the Discovery program; orbital reconnaissance of the planet Mercury (2004–2015)

MESSENGER was a NASA robotic space probe that orbited the planet Mercury between 2011 and 2015, studying Mercury's chemical composition, geology, and magnetic field. The name is a backronym for "Mercury Surface, Space Environment, Geochemistry, and Ranging", and a reference to the messenger god Mercury from Roman mythology.

<span class="mw-page-title-main">67P/Churyumov–Gerasimenko</span> Periodic contact binary comet

67P/Churyumov–Gerasimenko is a Jupiter-family comet, originally from the Kuiper belt, with a current orbital period of 6.45 years, a rotation period of approximately 12.4 hours and a maximum velocity of 135,000 km/h. Churyumov–Gerasimenko is approximately 4.3 by 4.1 km at its longest and widest dimensions. It was first observed on photographic plates in 1969 by Soviet astronomers Klim Ivanovych Churyumov and Svetlana Ivanovna Gerasimenko, after whom it is named. It most recently came to perihelion on 2 November 2021, and will next come to perihelion on 9 April 2028.

Timeline of <i>Rosetta</i> (spacecraft)

Rosetta is a space probe designed to rendezvous with the comet 67P/Churyumov–Gerasimenko, perform flybys of two asteroids, and carry lander Philae until its landing on 67P. This page records a detailed timeline of this mission.

<span class="mw-page-title-main">Coma (comet)</span> Cloud of gas or a trail around a comet or asteroid

The coma is the nebulous envelope around the nucleus of a comet, formed when the comet passes near the Sun in its highly elliptical orbit. As the comet warms, parts of it sublimate; this gives a comet a diffuse appearance when viewed through telescopes and distinguishes it from stars. The word coma comes from the Greek κόμη (kómē), which means "hair" and is the origin of the word comet itself.

<span class="mw-page-title-main">Alan Stern</span> American engineer and planetary scientist (born 1957)

Sol Alan Stern is an American engineer, planetary scientist and space tourist. He is the principal investigator of the New Horizons mission to Pluto and the Chief Scientist at Moon Express.

<span class="mw-page-title-main">Exploration of Pluto</span> Overview of the exploration of Pluto

The exploration of Pluto began with the arrival of the New Horizons probe in July 2015, though proposals for such a mission had been studied for many decades. There are no plans as yet for a follow-up mission, though follow-up concepts have been studied.

<span class="mw-page-title-main">Jovian Infrared Auroral Mapper</span>

Jovian Infrared Auroral Mapper (JIRAM) is an instrument on the Juno spacecraft in orbit of the planet Jupiter. It is an image spectrometer and was contributed by Italy. Similar instruments are on ESA Rosetta, Venus Express, and Cassini-Huygens missions. The primary goal of JIRAM is to probe the upper layers of Jupiter's atmosphere down to pressures of 5–7 bars at infrared wavelengths in the 2–5 μm interval using an imager and a spectrometer. The Jupiter's atmosphere and auroral regions are targeted for study. In particular it has been designed to study the dynamics and chemistry in the atmosphere, perhaps determining the how Jovian hot spots form.

<span class="mw-page-title-main">486958 Arrokoth</span> Kuiper belt object

486958 Arrokoth (provisional designation 2014 MU69; formerly nicknamed Ultima Thule) is a trans-Neptunian object located in the Kuiper belt. Arrokoth became the farthest and most primitive object in the Solar System visited by a spacecraft when the NASA space probe New Horizons conducted a flyby on 1 January 2019. Arrokoth is a contact binary 36 km (22 mi) long, composed of two planetesimals 21 and 15 km (13 and 9 mi) across, that are joined along their major axes. With an orbital period of about 298 years and a low orbital inclination and eccentricity, Arrokoth is classified as a cold classical Kuiper belt object.

UVS (<i>Juno</i>) Spectrometer instrument on the Juno orbiter

UVS, known as the Ultraviolet Spectrograph or Ultraviolet Imaging Spectrometer is the name of an instrument on the Juno orbiter for Jupiter. The instrument is an imaging spectrometer that observes the ultraviolet range of light wavelengths, which is shorter wavelengths than visible light but longer than X-rays. Specifically, it is focused on making remote observations of the aurora, detecting the emissions of gases such as hydrogen in the far-ultraviolet. UVS will observes light from as short a wavelength as 70 nm up to 200 nm, which is in the extreme and far ultraviolet range of light. The source of aurora emissions of Jupiter is one of the goals of the instrument. UVS is one of many instruments on Juno, but it is in particular designed to operate in conjunction with JADE, which observes high-energy particles. With both instruments operating together, both the UV emissions and high-energy particles at the same place and time can be synthesized. This supports the Goal of determining the source of the Jovian magnetic field. There has been a problem understanding the Jovian aurora, ever since Chandra determined X-rays were coming not from, as it was thought Io's orbit but from the polar regions. Every 45 minutes an X-ray hot-spot pulsates, corroborated by a similar previous detection in radio emissions by Galileo and Cassini spacecraft. One theory is that its related to the solar wind. The mystery is not that there are X-rays coming Jupiter, which has been known for decades, as detected by previous X-ray observatories, but rather why with the Chandra observation, that pulse was coming from the north polar region.

The Europa Ultraviolet Spectrograph (Europa-UVS) is an ultraviolet spectrograph imager that will be flown on board the Europa Clipper mission to Jupiter's moon Europa. The Europa-UVS will be able to detect small erupting plumes and will provide data about the composition and dynamics of Europa's thin exosphere.

<span class="mw-page-title-main">Hal A. Weaver</span> American astronomer (born 1956)

Harold Anthony "Hal" Weaver, Jr. is an American astronomer, known for his research into the composition of solar system bodies including comets and Kuiper belt objects.

Ralph (<i>New Horizons</i>)

Ralph is a science instrument aboard the robotic New Horizons spacecraft, which was launched in 2006. Ralph is a visible and infrared imager and spectrometer to provide maps of relevant astronomical targets based on data from that hardware. Ralph has two major subinstruments, LEISA and MVIC. MVIC stands for Multispectral Visible Imaging Camera and is a color imaging device, while LEISA originally stood for Linear Etalon Imaging Spectral Array and is an infrared imaging spectrometer for spaceflight. LEISA observes 250 discrete wavelengths of infrared light from 1.25 to 2.5 micrometers. MVIC is a pushbroom scanner type of design with seven channels, including red, blue, near-infrared (NIR), and methane.

<span class="mw-page-title-main">Long Range Reconnaissance Imager</span> Telescope aboard the New Horizons spacecraft for imaging

Long Range Reconnaissance Imager (LORRI) is a telescope aboard the New Horizons spacecraft for imaging. LORRI has been used to image Jupiter, its moons, Pluto and its moons, and Arrokoth since its launch in 2006. LORRI is a reflecting telescope of Ritchey-Chrétien design, and it has a main mirror diameter of 208 mm across. LORRI has a narrow field of view, less than a third of a degree. Images are taken with a CCD capturing data with 1024 × 1024 pixels. LORRI is a telescopic panchromatic camera integrated with the New Horizons spacecraft, and it is one of seven major science instruments on the probe. LORRI does not have any moving parts and is pointed by moving the entire New Horizons spacecraft.

<span class="mw-page-title-main">Pluto Energetic Particle Spectrometer Science Investigation</span> Instrument on the New Horizons space probe

Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI), is an instrument on the New Horizons space probe to Pluto and beyond, it is designed to measure ions and electrons. Specifically, it is focused on measuring ions escaping from the atmosphere of Pluto during the 2015 flyby. It is one of seven major scientific instruments aboard the spacecraft. The spacecraft was launched in 2006, flew by Jupiter the following year, and went onto flyby Pluto in 2015 where PEPSSI was able to record and transmit back to Earth its planned data collections.

Hibernation of spacecraft is an operating mode used when regular operations are suspended for an extended period of time but restarting is expected. On long duration and deep space missions it saves power or other limited resources and extends mission life. The term is substantially similar to the hibernation mode used in computer power saving.

References

  1. "The New Horizons Alice UV Spectrometer". www.boulder.swri.edu. Retrieved 2018-10-20.
  2. 1 2 "New Horizons". pluto.jhuapl.edu. Archived from the original on 2018-05-01. Retrieved 2018-10-20.
  3. 1 2 3 4 Stern, Alan (2008). ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto–Kuiper Belt Mission. Dordrecht: Springer Netherlands. pp. 155–187.
  4. 1 2 "ALICE: The ultraviolet imaging spectrograph aboard the New Horizons Pluto mission spacecraft". ResearchGate. Retrieved 2018-12-19.
  5. 1 2 3 4 Stern, S. A.; Slater, D. C.; Scherrer, J.; Stone, J.; Versteeg, M.; et al. (February 2007). "Alice: The Rosetta Ultraviolet Imaging Spectrograph". Space Science Reviews. 128 (1–4): 507–527. arXiv: astro-ph/0603585 . Bibcode:2007SSRv..128..507S. doi:10.1007/s11214-006-9035-8. S2CID   44273197.
  6. 1 2 3 4 Stern, S. A.; Slater, D. C.; Gibson, W.; Scherrer, J.; A'Hearn, M.; et al. (1998). "Alice—An Ultraviolet Imaging Spectrometer for the Rosetta Orbiter". Advances in Space Research. 21 (11): 1517–1525. Bibcode:1998AdSpR..21.1517S. doi: 10.1016/S0273-1177(97)00944-7 .
  7. 1 2 3 "ALICE Overview | Rosetta". rosetta.jpl.nasa.gov. Archived from the original on 2013-02-18. Retrieved 2018-10-20.
  8. "Rosetta-Alice spectrograph to begin first-ever close up ultraviolet studies of comet surface and atmosphere". Southwest Research Institute. 10 June 2014. Retrieved 28 December 2016.
  9. Stern, Alan (2008). ALICE: The Ultraviolet Imaging Spectrograph Aboard the New Horizons Pluto–Kuiper Belt Mission. Dordrecht: Springer Netherlands. p. 163.
  10. Gladstone, G. Randall; et al. (7 August 2018). "The Lyman‐α Sky Background as Observed by New Horizons". Geophysical Research Letters . 45 (16): 8022–8028. arXiv: 1808.00400 . Bibcode:2018GeoRL..45.8022G. doi:10.1029/2018GL078808. S2CID   119395450.
  11. Letzter, Rafi (9 August 2018). "NASA Spotted a Vast, Glowing 'Hydrogen Wall' at the Edge of Our Solar System". Live Science . Retrieved 10 August 2018.
  12. "What Is the Visible Light Spectrum?". ThoughtCo. Retrieved 2018-11-09.
  13. "How to Calculate the F-stop of the Human Eye". Popular Photography. Retrieved 2018-11-09.
  14. 3.1