FIELDS

Last updated
Overview of the FIELDS instrument on the Parker Solar Probe Parker-Solar-Probe-FIELDS.png
Overview of the FIELDS instrument on the Parker Solar Probe
Niobium (shown here) is the main ingredient in the high-temperature C-103 alloy which the four whip antennas are made of, to endure direct exposure to the Sun at planned proximities. Niobium crystals and 1cm3 cube.jpg
Niobium (shown here) is the main ingredient in the high-temperature C-103 alloy which the four whip antennas are made of, to endure direct exposure to the Sun at planned proximities.
FIELDS heads into space in August 2018 as part of the Parker Solar Probe. A NASA Delta IV Heavy rocket launches the Parker Solar Probe (29097299447).jpg
FIELDS heads into space in August 2018 as part of the Parker Solar Probe.
FIELDS is focused on increasing understanding of the Sun. Amazing Hi-Def CME (6938834194).png
FIELDS is focused on increasing understanding of the Sun.

FIELDS is a science instrument on the Parker Solar Probe (PSP), designed to measure magnetic fields in the solar corona during its mission to study the Sun. [1] It is one of four major investigations on board PSP, along with WISPR, ISOIS, and SWEAP. [1] It features three magnetometers. [1] FIELDS is planned to help answer an enduring questions about the Sun, such as why the solar corona is so hot compared to the surface of the Sun and why the solar wind is so fast (a million miles per hour). [2]

Contents

The host spacecraft, Parker Solar Probe , was launched by a Delta IV Heavy on August 12, 2018 from Florida, USA. [3] On August 13, 2018 FIELDS became the first instrument to be activated including beginning deployment of the four whip antennas (clamps unlocked) and extension of the magnetometer boom. [4] On September 4, 2018 the whip antennas were deployed. [5]

Overview

FIELDS features three magnetometers: two are fluxgate magnetometers, and the third is a search-coil magnetometer. [1] It has five voltage sensors, four of which extend beyond the spacecraft's heatshield and must directly endure the intense conditions at the planned distances of less than 10 solar radii to the Sun. [6] [7]

For best scientific observations, the spacecraft must approach to approximately about 10 solar radii (4% of the Earth-Sun distance) to take measurements from within the solar corona. [8] The task of FIELDS is to take measurements of the electrical and magnetic fields near the Sun. [2] Most of FIELDS instrumentation is protected, along with the bulk of the spacecraft by a special 4.5 inch (11.43 cm) thick carbon heatshield as the spacecraft is expected to endure temperatures of 2,500 degrees F. [9] While the surface of the Sun is roughly 10,000 degrees F, the solar corona has a temperature exceeding 1 million°F. [2] (about half a million°C)

Planned measurements include: [10]

Components

The key components of FIELDS are: [8] [1]

Supporting systems include four whip antennas (called V1 through V4) that are 2 meters long and made of C-103 niobium alloy. [1] These antennas are numbered V1, V2, V3, and V4. [1] V5 is a voltage sensor on the end of the spacecraft's magnetometer boom. All five send signals to the Antenna Electronics Board which is part of the Main Electronics Package, and each V1 to V5 has its own pre-amplifier that is sending this signal. [1] The sensors are integrated with various electrical and electronic processing systems which take in the raw signals and convert them into software data for transmission back to Earth by radio communication. [1]

The FIELDS experiment can also detect cosmic dust, by recording the dust impact strikes on the antennas. [12] It will try to detect micron sized and nanodust, if carried by the solar wind. [13] [14] It detects and sizes dust impacts on its antennas by the voltage signature. [14]

Operations

By September 2018, FIELDS had been turned on and first data was returned. [15] Data from FIELDS was designed for return from observations during the closer solar encounters of the Parker Solar Probe spacecraft in October–November 2018 and March–April 2019. [16]

Timeline

See also

Related Research Articles

<span class="mw-page-title-main">Mariner 2</span> 1962 space probe to Venus

Mariner 2, an American space probe to Venus, was the first robotic space probe to report successfully from a planetary encounter. The first successful spacecraft in the NASA Mariner program, it was a simplified version of the Block I spacecraft of the Ranger program and an exact copy of Mariner 1. The missions of the Mariner 1 and 2 spacecraft are sometimes known as the Mariner R missions. Original plans called for the probes to be launched on the Atlas-Centaur, but serious developmental problems with that vehicle forced a switch to the much smaller Agena B second stage. As such, the design of the Mariner R vehicles was greatly simplified. Far less instrumentation was carried than on the Soviet Venera probes of this period—for example, forgoing a TV camera—as the Atlas-Agena B had only half as much lift capacity as the Soviet 8K78 booster. The Mariner 2 spacecraft was launched from Cape Canaveral on August 27, 1962, and passed as close as 34,773 kilometers (21,607 mi) to Venus on December 14, 1962.

<i>Ulysses</i> (spacecraft) 1990 robotic space probe; studied the Sun from a near-polar orbit

Ulysses was a robotic space probe whose primary mission was to orbit the Sun and study it at all latitudes. It was launched in 1990 and made three "fast latitude scans" of the Sun in 1994/1995, 2000/2001, and 2007/2008. In addition, the probe studied several comets. Ulysses was a joint venture of the European Space Agency (ESA) and the United States' National Aeronautics and Space Administration (NASA), under leadership of ESA with participation from Canada's National Research Council. The last day for mission operations on Ulysses was 30 June 2009.

<span class="mw-page-title-main">Explorer 35</span> NASA satellite of the Explorer program

Explorer 35,, was a spin-stabilized spacecraft built by NASA as part of the Explorer program. It was designed for the study of the interplanetary plasma, magnetic field, energetic particles, and solar X-rays, from lunar orbit.

<span class="mw-page-title-main">Helios (spacecraft)</span> Pair of sun-orbiting probes launched in 1974-76 by the American and West German space agencies

Helios-A and Helios-B are a pair of probes that were launched into heliocentric orbit to study solar processes. As a joint venture between German Aerospace Center (DLR) and NASA, the probes were launched from Cape Canaveral Air Force Station, Florida, on December 10, 1974, and January 15, 1976, respectively.

<span class="mw-page-title-main">Solar Orbiter</span> European space-based solar observatory

The Solar Orbiter (SolO) is a Sun-observing probe developed by the European Space Agency (ESA) with a National Aeronautics and Space Administration (NASA) contribution. Solar Orbiter, designed to obtain detailed measurements of the inner heliosphere and the nascent solar wind, will also perform close observations of the polar regions of the Sun which is difficult to do from Earth. These observations are important in investigating how the Sun creates and controls its heliosphere.

<span class="mw-page-title-main">Explorer 52</span> NASA satellite of the Explorer program

Explorer 52, also known as Hawkeye-1, Injun-F, Neutral Point Explorer, IE-D, Ionospheric Explorer-D, was a NASA satellite launched on 3 June 1974, from Vandenberg Air Force Base on a Scout E-1 launch vehicle.

<span class="mw-page-title-main">Explorer 33</span> NASA satellite of the Explorer program (1966–)

Explorer 33, also known as IMP-D and AIMP-1, is a spacecraft in the Explorer program launched by NASA on 1 July 1966 on a mission of scientific exploration. It was the fourth satellite launched as part of the Interplanetary Monitoring Platform series, and the first of two "Anchored IMP" spacecraft to study the environment around Earth at lunar distances, aiding the Apollo program. It marked a departure in design from its predecessors, IMP-A through IMP-C. Explorer 35 was the companion spacecraft to Explorer 33 in the Anchored IMP program, but Explorer 34 (IMP-F) was the next spacecraft to fly, launching about two months before AIMP-E, both in 1967.

<span class="mw-page-title-main">Magnetospheric Multiscale Mission</span> Four NASA robots studying Earths magnetosphere (2015-present)

The Magnetospheric Multiscale (MMS) Mission is a NASA robotic space mission to study the Earth's magnetosphere, using four identical spacecraft flying in a tetrahedral formation. The spacecraft were launched on 13 March 2015 at 02:44 UTC. The mission is designed to gather information about the microphysics of magnetic reconnection, energetic particle acceleration, and turbulence⁠ — processes that occur in many astrophysical plasmas. As of March 2020, the MMS spacecraft have enough fuel to remain operational until 2040.

<span class="mw-page-title-main">Spacecraft magnetometer</span> Widely used scientific instrument aboard satellites and probes

Spacecraft magnetometers are magnetometers used aboard spacecraft and satellites, mostly for scientific investigations, plus attitude sensing. Magnetometers are among the most widely used scientific instruments in exploratory and observation satellites. These instruments were instrumental in mapping the Van Allen radiation belts around Earth after its discovery by Explorer 1, and have detailed the magnetic fields of the Earth, Moon, Sun, Mars, Venus and other planets and moons. There are ongoing missions using magnetometers, including attempts to define the shape and activity of Saturn's core.

<span class="mw-page-title-main">Parker Solar Probe</span> NASA robotic space probe of the outer corona of the Sun

The Parker Solar Probe is a NASA space probe launched in 2018 with the mission of making observations of the outer corona of the Sun. It will approach to within 9.86 solar radii from the center of the Sun, and by 2025 will travel, at closest approach, as fast as 690,000 km/h (430,000 mph) or 191 km/s, which is 0.064% the speed of light. It is the fastest object ever built.

<span class="mw-page-title-main">Explorer 14</span> NASA satellite of the Explorer program

Explorer 14, also called EPE-B or Energetic Particles Explorer-B, was a NASA spacecraft instrumented to measure cosmic-ray particles, trapped particles, solar wind protons, and magnetospheric and interplanetary magnetic fields. It was the second of the S-3 series of spacecraft, which also included Explorer 12, 14, 15, and 26. It was launched on 2 October 1962, aboard a Thor-Delta launch vehicle.

<span class="mw-page-title-main">Explorer 10</span> NASA satellite of the Explorer program

Explorer 10 was a NASA satellite that investigated Earth's magnetic field and nearby plasma. Launched on 25 March 1961, it was an early mission in the Explorer program and was the first satellite to measure the "shock wave" generated by a solar flare.

<span class="mw-page-title-main">ISEE-1</span> NASA satellite of the Explorer program

The ISEE-1 was an Explorer-class mother spacecraft, International Sun-Earth Explorer-1, was part of the mother/daughter/heliocentric mission. ISEE-1 was a 340.2 kg (750 lb) space probe used to study magnetic fields near the Earth. ISEE-1 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">ISEE-2</span>

The ISEE-2 was an Explorer-class daughter spacecraft, International Sun-Earth Explorer-2, was part of the mother/daughter/heliocentric mission. ISEE-2 was a 165.78 kg (365.5 lb) space probe used to study magnetic fields near the Earth. ISEE-2 was a spin-stabilized spacecraft and based on the design of the prior IMP series of spacecraft. ISEE-1 and ISEE-2 were launched on 22 October 1977, and they re-entered on 26 September 1987.

<span class="mw-page-title-main">Jovian Auroral Distributions Experiment</span> Plasma spectrometer aboard the Juno spacecraft

Jovian Auroral Distributions Experiment (JADE) is an instrument that detects and measures ions and electrons around the spacecraft. It is a suite of detectors on the Juno Jupiter orbiter. JADE includes JADE-E, JADE-I, and the EBox. JADE-E and JADE-I are sensors that are spread out on the spacecraft, and the EBox is located inside the Juno Radiation Vault. EBox stands for Electronics Box. JADE-E is for detecting electrons from 0.1 to 100 keV, and there are three JADE-E sensors on Juno. JADE-I is for detecting ions from 5 eV to 50 keV. It is designed to return data in situ on Jupiter's auroral region and magnetospheric plasmas, by observing electrons and ions in this region. It is primarily focused on Jupiter, but it was turned on in January 2016 while still en route to study inter-planetary space.

Magnetometer (<i>Juno</i>) Scientific instrument on the Juno space probe

Magnetometer (MAG) is an instrument suite on the Juno orbiter for planet Jupiter. The MAG instrument includes both the Fluxgate Magnetometer (FGM) and Advanced Stellar Compass (ASC) instruments. There two sets of MAG instrument suites, and they are both positioned on the far end of three solar panel array booms. Each MAG instrument suite observes the same swath of Jupiter, and by having two sets of instruments, determining what signal is from the planet and what is from spacecraft is supported. Avoiding signals from the spacecraft is another reason MAG is placed at the end of the solar panel boom, about 10 m and 12 m away from the central body of the Juno spacecraft.

Waves (<i>Juno</i>) Experiment on the Juno spacecraft to study radio and plasma waves

Waves is an experiment on the Juno spacecraft to study radio and plasma waves. It is part of collection of various types of instruments and experiments on the spacecraft; Waves is oriented towards understanding fields and particles in the Jupiter's magnetosphere. Waves is on board the uncrewed Juno spacecraft, which was launched in 2011 and arrived at Jupiter in the summer of 2016. The major focus of study for Waves is Jupiter's magnetosphere, which if could be seen from Earth would be about twice the size of a full moon. It has a tear drop shape, and that tail extends away from the Sun by at least 5 AU. The Waves instrument is designed to help understand the interaction between Jupiter's atmosphere, its magnetic field, its magnetosphere, and to understand Jupiter's auroras. It is designed to detect radio frequencies from 50 Hz up to 40,000,000 Hz (40 MHz), and magnetic fields from 50 Hz to 20,000 Hz (20 kHz). It has two main sensors a dipole antenna and a magnetic search coil. The dipole antenna has two whip antenna's that extend 2.8 meters and they are attached to the main body of the spacecraft. This sensor has been compared to a rabbit ears set-top TV antenna. The search coil is overall a mu metal rod 15 cm (6 in) length with a fine copper wire wound 10,000 times around it. There are also two frequency receivers that each cover certain bands. Data handling is done by two radiation hardened systems on a chip. The data handling units are located inside the Juno Radiation Vault. Waves was allocated 410 Mbits of data per science orbit.

<span class="mw-page-title-main">Explorer 45</span> NASA satellite of the Explorer program

Explorer 45 was a NASA satellite launched as part of Explorer program. Explorer 45 was the only one to be released from the program Small Scientific Satellite.

<span class="mw-page-title-main">WISPR</span>

The Wide-Field Imager for Solar Probe (WISPR) is an imaging instrument of the Parker Solar Probe mission to the Sun, launched in August 2018. Imaging targets include visible light images of the corona, solar wind, shocks, solar ejecta, etc. Development of WISPR was led by the U.S. Naval Research Laboratory. The Parker Solar Probe with WISPR on board was launched by a Delta IV Heavy on 12 August 2018 from Cape Canaveral, Florida. WISPR is intended take advantage of the spacecraft's proximity to the Sun by taking coronagraph-style images of the solar corona and features like coronal streamers, plumes, and mass ejections. One of the goals is to better understand the structure of the solar corona near the Sun.

<i>Galileo</i> (spacecraft) NASA probe sent to Jupiter (1989–2003)

Galileo was an American robotic space probe that studied the planet Jupiter and its moons, as well as the asteroids Gaspra and Ida. Named after the Italian astronomer Galileo Galilei, it consisted of an orbiter and an entry probe. It was delivered into Earth orbit on October 18, 1989, by Space ShuttleAtlantis, during STS-34. Galileo arrived at Jupiter on December 7, 1995, after gravitational assist flybys of Venus and Earth, and became the first spacecraft to orbit an outer planet.

References

  1. 1 2 3 4 5 6 7 8 9 Bale, S. D.; Goetz, K.; Harvey, P. R.; Turin, P.; Bonnell, J. W.; Dudok de Wit, T.; Ergun, R. E.; MacDowall, R. J.; Pulupa, M.; et al. (2016-03-31). "The FIELDS Instrument Suite for Solar Probe Plus". Space Science Reviews. 204 (1–4): 49–82. doi: 10.1007/s11214-016-0244-5 . ISSN   0038-6308. PMC   5942226 . PMID   29755144.
  2. 1 2 3 "Here comes the sun: New spacecraft to fly closer than ever before". CU Boulder Today. 2018-08-08. Retrieved 2018-08-18.
  3. Brown, Geoffrey; Brown, Dwayne; Fox, Karen (August 12, 2018). "Parker Solar Probe Launches on Historic Journey to Touch the Sun". Parker Solar Probe. Retrieved August 13, 2018.
  4. 1 2 "Parker Solar Probe Marks First Mission Milestones on Voyage to Sun – Parker Solar Probe". blogs.nasa.gov. 17 August 2018. Retrieved 2018-08-19.
  5. 1 2 "NASA's Parker Solar Probe brings instruments and secondary systems online ahead of schedule | V3". V3. Retrieved 2018-09-12.
  6. Garner, Rob (2018-07-12). "Parker Solar Probe Instruments". NASA. Archived from the original on 2018-08-11. Retrieved 2018-08-17.
  7. "NASA Press Kit: Parker Solar Probe" (PDF). NASA. Retrieved 15 August 2018.
  8. 1 2 Cheng, Weilun; Kee, Calvin; Wirzburger, John. Parker Solar Probe MAG Boom Design, Analysis and Verification (PDF) (Report). Retrieved December 3, 2022.
  9. "NASA Probe That Will Touch Sun Set to Launch August 11". Fortune. Retrieved 2018-08-18.
  10. JHUAPL. "Parker Solar Probe: Spacecraft". parkersolarprobe.jhuapl.edu. Retrieved 2018-08-17.
  11. "Satellite Mission Catalogue - Parker Solar Probe". eoportal.org. July 21, 2016. Retrieved November 12, 2022.
  12. Kasper, Justin C. "The SWEAP Investigation for Parker Solar Probe". www.cfa.harvard.edu. Retrieved 2018-08-17.
  13. "Parker Solar Probe - eoPortal Directory - Satellite Missions". directory.eoportal.org. Retrieved 2018-09-10.
  14. 1 2 "Parker Solar Probe/FIELDS Science – PSP/FIELDS". UC Berkeley. Retrieved November 30, 2022.
  15. "Illuminating First Light Data from Parker Solar Probe – Parker Solar Probe". blogs.nasa.gov. 19 September 2018. Retrieved 2018-12-23.
  16. "The FIELDS Experiment for the Parker Solar Probe". UC Berkeley. Retrieved November 30, 2022.
  17. "NASA Solar Probe Hits 1st Deep-Space Milestones On Its Way to the Sun". Space.com. Retrieved 2018-08-18.
  18. "Parker Solar Probe Operating as Planned, NASA Says". NDTV Gadgets360.com. Retrieved 2018-08-18.
  19. "Parker Solar Probe". blogs.nasa.gov. Retrieved 2018-09-12.