Seismic Experiment for Interior Structure

Last updated
Seismic Experiment for Interior Structure
PIA19144-MarsMission-InSight-Testing-20150304.jpg
Testing of the lander's robotic arm that deployed the seismometer
OperatorNASA
Manufacturer CNES
Instrument typegeophysical observations
Function seismometer
Mission durationPlanned: 2 years on Mars [1] Final: 1446 sols (1485 days)
Began operationsLanding: 26 November 2018
Ceased operations21 December 2022
Website www.seis-insight.eu/en/
Properties
Mass29.5 kg (65 lb) [2]
DimensionsVacuum chamber volume: 3 L (0.66 imp gal; 0.79 US gal) [2]
Power consumption8.5 W [2]
Data rate38 megabits/day [2]
Host spacecraft
Spacecraft InSight
Operator NASA
Launch date5 May 2018, 11:05 (2018-05-05UTC11:05)  UTC
COSPAR ID 2018-042A

The Seismic Experiment for Interior Structure (SEIS) is a seismometer and the primary scientific instrument on board the InSight Mars lander launched on 5 May 2018 for a landing on 26 November 2018; the instrument was deployed to the surface of Mars on 19 December. SEIS is expected to provide seismic measurements of marsquakes, enabling researchers to develop 3D structure maps of the deep interior. Better understanding the internal structure of Mars will lead to better understanding of the Earth, Moon, and rocky planetary bodies in general.

Contents

SEIS detected marsquakes in Cerberus Fossae in 2019.

On 24 December 2021, the seismometer for the InSight mission on Mars detected a large seismic event with a distinct signature. The event was caused by a meteor impact on the surface of Mars, which was confirmed by satellite observations of a newly formed 150-meter crater. [3] As of 21 December 2022, which marks the official end of the InSight mission, SEIS has detected a total of 1319 marsquakes. [4]

Overview

Mars flybys and landings to gather scientific data have been conducted since the 1960s, but quality seismological studies – which would provide detailed information about the interior of Mars – have yet to be performed in the 21st century.

Only two astronomical bodies – the Earth and the Moon – have been studied in this way, and learning about Mars is hoped to contribute to understanding the geology of all rocky planetary bodies.

Other onboard instruments working in synergy with SEIS are the Temperature and Winds for InSight module, the Heat Flow and Physical Properties Package, and the Rotation and Interior Structure Experiment.

Earlier missions

Both Viking Mars landers in the 1970s had a seismometer (part is visible between the calibration targets), but deployment issues hampered meaningful geological data. Viking2lander1.jpg
Both Viking Mars landers in the 1970s had a seismometer (part is visible between the calibration targets), but deployment issues hampered meaningful geological data.

While two seismometers were landed on Mars during the Viking missions in 1976, results were limited. [5] Seismometers on both Viking spacecraft were mounted on the lander, which meant that it also picked up vibrations from various operations of the lander and caused by the wind. [6] In addition, the Viking 1 lander's seismometer did not deploy properly. [7]

The seismometer readings were used to estimate a Martian geological crust thickness between 14 and 18 km (8.7 and 11.2 mi) at the Viking 2 lander site. [8] Unexpectedly, the seismometer also detected pressure from the Mars winds, complementing the meteorology results. [8] [9] A single possible candidate for a marsquake was recorded, although it was not confirmed due to the limitations of the design, and interference from other sources of vibration such as wind. Despite these limitations, it was clear that widespread and large marsquakes were not detected. [10]

Design

SEIS is the primary instrument of the InSight mission, and it was designed and produced by the French Space Agency (CNES), with the participation of the Institut de Physique du Globe de Paris (IPGP), the Swiss Federal Institute of Technology (ETH), the Max Planck Institute for Solar System Research (MPS), Imperial College, Institut supérieur de l'aéronautique et de l'espace (ISAE) and JPL. [11] [12] The Principal Investigator is Philippe Lognonné from the Institute of Earth Physics of Paris (Institut de Physique du Globe de Paris), in the E.U. [2]

Its design consists of a 3-axis very-broad-band seismometer (enclosed in a vacuum thermal enclosure) and a 3-axis short-period instrument. [5] Mars is expected to have lower seismic activity than Earth, so minimisation of wind vibrations is critical. The whole assembly is placed under a heavy wind and thermal shield designed to minimize thermal contrasts and offer some protection against gusts of wind.

The tripod-mounted seismometer will take precise measurements of marsquakes and other internal activity on Mars to better understand the planet's history and internal structure. It will also investigate how the Martian crust and mantle respond to the effects of meteorite impacts, which gives clues to the planet's inner structure. [13] [14] [15] The seismometer will also detect sources including atmospheric waves and gravimetric signals (tidal forces) from Mars' moon Phobos, up to high-frequency seismic waves at 50 Hz. [16] [17]

The SEIS instrument is deployed by the Instrument Deployment System, a robotic arm that can position the sensor directly on the surface. [18] The instrument is supported by a suite of meteorological sensors (TWINS) to characterize atmospheric disturbances that might affect the measurements. These include a vector magnetometer provided by UCLA that will measure magnetic disturbances such as those caused by the Martian ionosphere; a suite of air temperature, wind speed and wind direction sensors based on the Spanish/Finnish Rover Environmental Monitoring Station; and a barometer from JPL. [19] [20]

Artist's concept of the SEIS instrument deployed on the Martian surface (right-side). On the left is the HP instrument burrowing below the surface. InSight lander (PIA17358).jpg
Artist's concept of the SEIS instrument deployed on the Martian surface (right-side). On the left is the HP instrument burrowing below the surface.

During the final integration of SEIS, several small leaks were found in the vacuum thermal enclosure. This forced the postponement of the InSight launch from 2016 to 2018, and the redesign of a new enclosure under the supervision of JPL. [5] [21] The cost of the delay was estimated to be US$150 million. [22]

Animation of the seismometer being lifted off the saucer by the robotic arm and placed on the surface of Mars Insight seisanimate.gif
Animation of the seismometer being lifted off the saucer by the robotic arm and placed on the surface of Mars

Operations

Illustration from the USGS of how P and S waves from an Earthquake make a shadow zone because of the core. Earthquake wave shadow zone.svg
Illustration from the USGS of how P and S waves from an Earthquake make a shadow zone because of the core.

Routine operations will be split into two services, the Mars Structure Service (MSS) and Marsquake Service (MQS), which will be responsible, respectively, for defining the structure models and seismic activity. [16] Combination of data with results from the InSight radio science and orbital observations will allow for constraint of the deeper structure.

Possible observations include:

Single-site seismology

Fresh asteroid impact on Mars at
.mw-parser-output .geo-default,.mw-parser-output .geo-dms,.mw-parser-output .geo-dec{display:inline}.mw-parser-output .geo-nondefault,.mw-parser-output .geo-multi-punct,.mw-parser-output .geo-inline-hidden{display:none}.mw-parser-output .longitude,.mw-parser-output .latitude{white-space:nowrap}
3deg20'N 219deg23'E / 3.34degN 219.38degE / 3.34; 219.38 - before/March 27 & after/March 28, 2012 (MRO) It is hoped SEIS may be able to detect vibrations of a strong enough impact on Mars, and if the impact site is located, it allows even more understanding. PIA18381-Mars-FreshAsteroidImpact2012-Before27March-After28March.jpg
Fresh asteroid impact on Mars at 3°20′N219°23′E / 3.34°N 219.38°E / 3.34; 219.38 before/March 27 & after/March 28, 2012 (MRO) It is hoped SEIS may be able to detect vibrations of a strong enough impact on Mars, and if the impact site is located, it allows even more understanding.

During development, the power of multiple sites was noted, but one site offers a tremendous insight to the interior. With a single site, the location of a marsquake event can be constrained to the surface of a sphere, by measuring what are known as P-waves and S-waves. [24]

There is a variety of single-site seismology techniques that can yield data, for example, the detection of an impact on the surface by a meteorite for which the location is identified. [24] If Mars has large marsquakes, they may allow the deep interior to be determined. As the vibrations pass through the planet they are affected by the properties of the materials and its configuration. [24]

For example, the effect of tidal forces on Mars by Phobos, which should be about 10 mm, would be noticeably affected by a liquid Mars core. Even without any marsquake, it should be possible after about six months of observation to use this method to increase or decrease the likelihood Mars has a liquid core. [24]

Cutaway illustration

Cutaway illustration showing interior components of SEIS PIA22320 - Cutaway of SEIS (Artist's Concept).jpg
Cutaway illustration showing interior components of SEIS

Placement on the surface

On 19 December 2018, the SEIS instrument was deployed to the surface of Mars next to the lander by its robotic arm. [26]

InSight – seismometer deployed, first time onto the surface of another planet (19 December 2018) [26]
PIA22978-Mars-InSight-Lander-DeployingSeismometer-20181219.gif
context (ICC-gif)
PIA22977-Mars-InSight-Lander-DeployingSeismometer-IDC-20181219.gif
deploying (IDC-gif)
PIA22956-Mars-InSight-SeismometerDeployed-20181219.png
final (IDC)

See also

Related Research Articles

<span class="mw-page-title-main">Viking program</span> Pair of NASA landers and orbiters sent to Mars in 1976

The Viking program consisted of a pair of identical American space probes, Viking 1 and Viking 2, which landed on Mars in 1976. The mission effort began in 1968 and was managed by the NASA Langley Research Center. Each spacecraft was composed of two main parts: an orbiter designed to photograph the surface of Mars from orbit, and a lander designed to study the planet from the surface. The orbiters also served as communication relays for the landers once they touched down.

<i>Viking 1</i> Robotic spacecraft sent to Mars

Viking 1 was the first of two spacecraft, along with Viking 2, each consisting of an orbiter and a lander, sent to Mars as part of NASA's Viking program. The lander touched down on Mars on July 20, 1976, the first successful Mars lander in history. Viking 1 operated on Mars for 2,307 days or 2245 Martian solar days, the longest Mars surface mission until the record was broken by the Opportunity rover on May 19, 2010.

<i>Mars Pathfinder</i> Mission including first robotic rover to operate on Mars (1997)

Mars Pathfinder is an American robotic spacecraft that landed a base station with a roving probe on Mars in 1997. It consisted of a lander, renamed the Carl Sagan Memorial Station, and a lightweight, 10.6 kg (23 lb) wheeled robotic Mars rover named Sojourner, the first rover to operate outside the Earth–Moon system.

<span class="mw-page-title-main">Mars Polar Lander</span> Failed 1999 robotic Mars lander

The Mars Polar Lander, also known as the Mars Surveyor '98 Lander, was a 290-kilogram robotic spacecraft lander launched by NASA on January 3, 1999, to study the soil and climate of Planum Australe, a region near the south pole on Mars. It formed part of the Mars Surveyor '98 mission. On December 3, 1999, however, after the descent phase was expected to be complete, the lander failed to reestablish communication with Earth. A post-mortem analysis determined the most likely cause of the mishap was premature termination of the engine firing prior to the lander touching the surface, causing it to strike the planet at a high velocity.

<span class="mw-page-title-main">Exploration of Mars</span> Overview of the exploration of Mars

The planet Mars has been explored remotely by spacecraft. Probes sent from Earth, beginning in the late 20th century, have yielded a large increase in knowledge about the Martian system, focused primarily on understanding its geology and habitability potential. Engineering interplanetary journeys is complicated and the exploration of Mars has experienced a high failure rate, especially the early attempts. Roughly sixty percent of all spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin. Some missions have been met with unexpected success, such as the twin Mars Exploration Rovers, Spirit and Opportunity, which operated for years beyond their specification.

<span class="mw-page-title-main">Mars 96</span> Failed Mars mission

Mars 96 was a failed Mars mission launched in 1996 to investigate Mars by the Russian Space Forces and not directly related to the Soviet Mars probe program of the same name. After failure of the second fourth-stage burn, the probe assembly re-entered the Earth's atmosphere, breaking up over a 320 km (200 mi) long portion of the Pacific Ocean, Chile, and Bolivia. The Mars 96 spacecraft was based on the Phobos probes launched to Mars in 1988. They were of a new design at the time and both ultimately failed. For the Mars 96 mission the designers believed they had corrected the flaws of the Phobos probes, but the value of their improvements was never demonstrated due to the destruction of the probe during the launch phase.

<span class="mw-page-title-main">Transit of Phobos from Mars</span> Transit of a Moon from Mars

A transit of Phobos across the Sun as seen from Mars takes place when Phobos passes directly between the Sun and a point on the surface of Mars, obscuring a large part of the Sun's disc for an observer on Mars. During a transit, Phobos can be seen from Mars as a large black disc rapidly moving across the face of the Sun. At the same time, the shadow (antumbra) of Phobos moves across the Martian surface.

The Institut de Physique du Globe de Paris- Université de Paris is a French governmental, non-profit research and higher education establishment located in Paris, dedicated to the study of earth and planetary sciences by combining observations, laboratory analysis and construction of conceptual analogical and numerical models.

<span class="mw-page-title-main">Viking lander biological experiments</span> Mars life detection experiments

In 1976 two identical Viking program landers each carried four types of biological experiments to the surface of Mars. The first successful Mars landers, Viking 1 and Viking 2, then carried out experiments to look for biosignatures of microbial life on Mars. The landers each used a robotic arm to pick up and place soil samples into sealed test containers on the craft.

<span class="mw-page-title-main">Elysium (volcanic province)</span> 2nd-largest volcanic region of Mars

Elysium, located in the Elysium and Cebrenia quadrangles, is the second largest volcanic region on Mars, after Tharsis. The region includes the volcanoes Hecates Tholus, Elysium Mons and Albor Tholus. The province is centered roughly on Elysium Mons at 24.7°N 150°E. Elysium Planitia is a broad plain to the south of Elysium, centered at 3.0°N 154.7°E. Another large volcano, Apollinaris Mons, lies south of Elysium Planitia and is not part of the province. Besides having large volcanoes, Elysium has several areas with long trenches, called fossa or fossae (plural) on Mars. They include the Cerberus Fossae, Elysium Fossae, Galaxias Fossae, Hephaestus Fossae, Hyblaeus Fossae, Stygis Fossae and Zephyrus Fossae.

A quake is the result when the surface of a planet, moon or star begins to shake, usually as the consequence of a sudden release of energy transmitted as seismic waves, and potentially with great violence.

<span class="mw-page-title-main">Marsquake</span> Seismic event occurring on Mars

A marsquake is a quake which, much like an earthquake, would be a shaking of the surface or interior of the planet Mars as a result of the sudden release of energy in the planet's interior, such as the result of plate tectonics, which most quakes on Earth originate from, or possibly from hotspots such as Olympus Mons or the Tharsis Montes. The detection and analysis of marsquakes could be informative to probing the interior structure of Mars, as well as identifying whether any of Mars's many volcanoes continue to be volcanically active.

<span class="mw-page-title-main">Cerberus Fossae</span> Series of semi-parallel fissures on Mars formed by faults

The Cerberus Fossae are a series of semi-parallel fissures on Mars formed by faults which pulled the crust apart in the Cerberus region. They are 1235 km across and centered at 11.28 °N and 166.37 °E. Their northernmost latitude is 16.16 °N and their southernmost latitude 6.23 °N. Their easternmost and westernmost longitudes are 174.72 °E and 154.43 °E, respectively. They can be seen in the Elysium quadrangle.

<span class="mw-page-title-main">Northern Light (spacecraft)</span> Cancelled Canadian Mars lander and rover mission

Northern Light was a concept mission for a robotic mission to Mars that would consist of a lander and a rover, being studied by a consortium of Canadian universities, companies and organisations. The primary contractor for the spacecraft was Thoth Technology Inc.

<span class="mw-page-title-main">Lunar seismology</span> Study of ground motions of the Moon

Lunar seismology is the study of ground motions of the Moon and the events, typically impacts or moonquakes, that excite them.

<span class="mw-page-title-main">InSight</span> Mars lander, arrived November 2018

The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission was a robotic lander designed to study the deep interior of the planet Mars. It was manufactured by Lockheed Martin Space, was managed by NASA's Jet Propulsion Laboratory (JPL), and two of its three scientific instruments were built by European agencies. The mission launched on 5 May 2018 at 11:05:01 UTC aboard an Atlas V-401 launch vehicle and successfully landed at Elysium Planitia on Mars on 26 November 2018 at 19:52:59 UTC. InSight was active on Mars for 1440 sols.

<span class="mw-page-title-main">Heat Flow and Physical Properties Package</span> Scientific instrument of the InSight Mars lander

The Heat Flow and Physical Properties Package (HP3) is a science payload on board the InSight lander that features instruments to study the heat flow and other thermal properties of Mars. One of the instruments, a burrowing probe nicknamed "the mole", was designed to penetrate 5 m (16 ft) below Mars' surface. In March 2019, the mole burrowed a few centimeters, but then became unable to make progress due to various factors. In the following year further attempts were made to resolve the issues, with little net progress. On January 14, 2021, it was announced that efforts to drill into the martian surface using the device had been terminated.

<span class="mw-page-title-main">Temperature and Winds for InSight</span>

Temperature and Winds for InSight (TWINS) is a NASA meteorological suite of instruments on board the InSight lander that landed on Mars on 26 November 2018. TWINS provides continuous wind and air temperature measurements to help understand the seismic data from the Seismic Experiment for Interior Structure (SEIS) instrument. The instruments were developed by the Spanish Astrobiology Center at Madrid, Spain.

<span class="mw-page-title-main">Impact events on Mars</span>

In modern times, numerous impact events on Mars have been detected. Although most have been inferred from the appearance of new impact craters on the planet, some have corresponded to marsquakes felt by the InSight lander. To date, no impacting meteors have been directly observed as a fireball or discovered in space before impact.

<span class="mw-page-title-main">Seismic velocity structure</span> Seismic wave velocity variation

Seismic velocity structure is the distribution and variation of seismic wave speeds within Earth's and other planetary bodies' subsurface. It is reflective of subsurface properties such as material composition, density, porosity, and temperature. Geophysicists rely on the analysis and interpretation of the velocity structure to develop refined models of the subsurface geology, which are essential in resource exploration, earthquake seismology, and advancing our understanding of Earth's geological development.

References

  1. "InSight – Mission Overview". NASA. 2012. Archived from the original on 2013-01-12. Retrieved 22 August 2012.
  2. 1 2 3 4 5 InSight Seismometer. NASA. Accessed 17 July 2018.
  3. Posiolova, L. V.; et al. (2022). "Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation". Science. 378 (6618): 412–417. Bibcode:2022Sci...378..412P. doi:10.1126/science.abq7704. hdl: 10044/1/100459 . PMID   36302013. S2CID   253183826.
  4. ""NASA Retires InSight Mars Lander Mission After Years of Science"". 21 December 2022. Retrieved January 11, 2023.
  5. 1 2 3 SEIS/INSIGHT: One year prior launch for Seismic Discovery on Mars. Lognonne, Philippe; Banerdt, W. Bruce; Giardini, Domenico; Pike, W. Tom; Christensen, Ulli; Knapmeyer-Endrun, Brigitte; de Raucourt, Sebastien; Umland, Jeff; Hurst, Ken; Zweifel, Peter; Calcutt, Simon; Bierwirth, Marco; Mimoun, David; Pont, Gabriel; Verdier, Nicolas; Laudet, Philippe; Smrekar, Sue; Hoffman, Tom. 19th EGU General Assembly, EGU2017, proceedings from the conference held 23–28 April 2017 in Vienna, Austria., p.9978
  6. Anderson, Don L.; et al. (September 1977). "Signatures of Internally Generated Lander Vibrations" (PDF). Journal of Geophysical Research. 82 (28): 4524–4546, A–2. Bibcode:1977JGR....82.4524A. doi:10.1029/JS082i028p04524.
  7. "Happy Anniversary, Viking Lander". Science@NASA. NASA. 20 July 2001.
  8. 1 2 Howell, Elizabeth (6 December 2012). "Viking 2: Second Landing on Mars". Space.com. Retrieved 15 November 2017.
  9. Nakamura, Y.; Anderson, D. L. (June 1979). "Martian wind activity detected by a seismometer at Viking lander 2 site" (PDF). Geophysical Research Letters. 6 (6): 499–502. Bibcode:1979GeoRL...6..499N. doi:10.1029/GL006i006p00499.
  10. Lorenz, Ralph D.; Nakamura, Yosio; Murphy, James R. (November 2017). "Viking-2 Seismometer Measurements on Mars: PDS Data Archive and Meteorological Applications". Earth and Space Science. 4 (11): 681–688. Bibcode:2017E&SS....4..681L. doi: 10.1002/2017EA000306 .
  11. Francis, Matthew (21 August 2012). "New probe to provide InSight into Mars' interior". Ars Technica . Retrieved 21 August 2012.
  12. Lognonné, P.; Banerdt, W. B.; Giardini, D.; Christensen, U.; Pike, T.; et al. (October 2011). The GEMS (GEophysical Monitoring Station) SEISmometer (PDF). EPSC-DPS Joint Meeting 2011. 2–7 October 2011. Nantes, France. Bibcode:2011epsc.conf.1507L. EPSC-DPS2011-1507-1.
  13. "NASA and French Space Agency Sign Agreement for Mars Mission" (Press release). NASA. 10 February 2014. Retrieved 11 February 2014.
  14. Boyle, Rebecca (4 June 2015). "Listening to meteorites hitting Mars will tell us what's inside". New Scientist. Retrieved 2015-06-05.
  15. Kumar, Sunil (1 September 2006). Design and development of a silicon micro-seismometer (PDF) (Ph.D.). Imperial College London. Retrieved 2015-07-15.
  16. 1 2 Planned products of the Mars Structure Service for the InSight mission to Mars Archived 2019-02-14 at the Wayback Machine (PDF). Mark P. Panning, Philippe Lognonne, W. Bruce Banerdt, Raphael Garcia, Matthew Golombek, et al. Space Science Reviews 16 November 2016. doi : 10.1007/s11214-016-0317-5
  17. Banerdt, W. Bruce (2012). InSight – Geophysical Mission to Mars (PDF). 26th Mars Exploration Program Analysis Group Meeting. 4 October 2012. Monrovia, California.
  18. "Archived copy" (PDF). Archived from the original (PDF) on 2018-09-10. Retrieved 2018-11-24.{{cite web}}: CS1 maint: archived copy as title (link)
  19. David, Leonard (15 August 2014). "NASA's Next Mars Lander Will Peer Deep Into Red Planet's History: Here's How". Space.com. Retrieved 16 August 2014.
  20. Banerdt, W. Bruce (7 March 2013). InSight: A Geophysical Mission to a Terrestrial Planet Interior (PDF). Committee on Astrobiology and Planetary Science. 6–8 March 2013. Washington, D.C.
  21. Clark, Stephen (9 March 2016). "InSight Mars lander escapes cancellation, aims for 2018 launch". Spaceflight Now. Retrieved 9 March 2016.
  22. Foust, Jeff (28 March 2016). "InSight's second chance". The Space Review. Retrieved 2016-04-05.
  23. Fernando, Benjamin; Wójcicka, Natalia; Froment, Marouchka; Maguire, Ross; Stähler, Simon C.; Rolland, Lucie; Collins, Gareth S.; Karatekin, Ozgur; Larmat, Carene; Sansom, Eleanor K.; Teanby, Nicholas A. (2021). "Listening for the Landing: Seismic Detections of Perseverance's arrival at Mars with InSight". Earth and Space Science. 8 (4): e2020EA001585. Bibcode:2021E&SS....801585F. doi: 10.1029/2020EA001585 . hdl: 20.500.11937/90005 . ISSN   2333-5084.
  24. 1 2 3 4 5 6 "Geophysical Network Mission for MARS 2009" (PDF). Archived from the original (PDF) on 2016-06-03. Retrieved 2018-11-23.
  25. Webster, Guy; Brown, Dwayne (May 22, 2014). "NASA Mars Weathercam Helps Find Big New Crater". NASA . Retrieved May 22, 2014.
  26. 1 2 Cook, Jia-Rui; Good, Andrew (19 December 2018). "NASA's InSight Places First Instrument on Mars". NASA . Retrieved 20 December 2018.