Names | JPSS-1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mission type | Weather | ||||||||||||
Operator | NOAA | ||||||||||||
COSPAR ID | 2017-073A | ||||||||||||
SATCAT no. | 43013 | ||||||||||||
Website | http://www.jpss.noaa.gov/ | ||||||||||||
Mission duration | 7 years (planned) [1] 6 years, 11 months, 2 days (elapsed) | ||||||||||||
Spacecraft properties | |||||||||||||
Spacecraft type | Joint Polar Satellite System-1 | ||||||||||||
Bus | BCP-2000 | ||||||||||||
Manufacturer | Ball Aerospace & Technologies | ||||||||||||
Launch mass | 2540 kg | ||||||||||||
Dry mass | 1929 kg | ||||||||||||
Payload mass | 578 kg | ||||||||||||
Dimensions | 1.3 m x 1.3 m x 4.2 m | ||||||||||||
Power | 1932 watts | ||||||||||||
Start of mission | |||||||||||||
Launch date | 18 November 2017, 09:47:36 UTC | ||||||||||||
Rocket | Delta II 7920-10C D-378 | ||||||||||||
Launch site | Vandenberg, SLC-2W | ||||||||||||
Contractor | United Launch Alliance | ||||||||||||
Entered service | 30 May 2018 | ||||||||||||
Orbital parameters | |||||||||||||
Reference system | Geocentric orbit | ||||||||||||
Regime | Sun-synchronous orbit | ||||||||||||
Perigee altitude | 824.3 km (512.2 mi) | ||||||||||||
Apogee altitude | 833.0 km (517.6 mi) | ||||||||||||
Inclination | 98.79° | ||||||||||||
Period | 101.44 minutes | ||||||||||||
| |||||||||||||
JPSS-1 Mission Insignia Large Strategic Science Missions Earth Science Division |
NOAA-20, designated JPSS-1 prior to launch, is the first of the United States National Oceanic and Atmospheric Administration's latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-20 was launched on 18 November 2017 and joined the Suomi National Polar-orbiting Partnership satellite in the same orbit. NOAA-20 operates about 50 minutes behind Suomi NPP, allowing important overlap in observational coverage. Circling the Earth from pole-to-pole, it crosses the equator about 14 times daily, providing full global coverage twice a day. This gives meteorologists information on "atmospheric temperature and moisture, clouds, sea-surface temperature, ocean color, sea ice cover, volcanic ash, and fire detection" so as to enhance weather forecasting including hurricane tracking, post-hurricane recovery by detailing storm damage and mapping of power outages. [2] [3]
The project incorporates five instruments, and these are substantially upgraded since previous satellite equipment. The project's greater-detailed observations provide better predictions and emphasize climate behavior in cases like El Niño and La Niña. [2]
The satellite bus of the project and Ozone Mapping and Profiler Suite (OMPS) equipment, was designed by Ball Aerospace & Technologies. The Visible Infrared Imaging Radiometer Suite (VIIRS) and the Common Ground System (CGS) were built by Raytheon Company, and the Cross-track Infrared Sounder (CrIS) was by Harris Corporation. The Advanced Technology Microwave Sounder (ATMS) and the Clouds and the Earth's Radiant Energy System (CERES) instrument were built by Northrop Grumman Innovation Systems. [2]
The NOAA-20 launch was delayed several times. When the contract was awarded in 2010, launch was scheduled for 2014. [4] By 2011, launch had slipped to 2016, and by 2012 that had slipped to 2017. [5] [6] In August 2016, following environmental testing, launch slipped from 20 January 2017 to 16 March 2017 due to problems with ATMS and the ground system. [7] In January 2017, launch was delayed from March 2017 to the fourth quarter of fiscal year 2017, or July to September 2017 for the same reasons. [8] The launch was delayed from September 2017 to 10 November 2017 to provide extra time for engineers to complete testing of the spacecraft and electronics as well as ATMS. [9]
It also experienced several brief launch delays in the final weeks before launch. Originally scheduled to launch on 10 November 2017, it was delayed to the 14 November 2017 following the discovery of a faulty battery on the Delta II launch vehicle. [10] The launch was then delayed to 15 November 2017 due to boats being in the launch safety zone minutes before the launch and due to a bad reading on the first stage of the launch vehicle. [11] It was delayed a third time to 18 November 2017 due to high winds. [12]
NOAA-20 successfully launched on 18 November 2017 at 09:47:36 UTC. [2] It represented the penultimate, and 99th consecutive successful launch of the Delta II launch vehicle. It was launched along with 5 CubeSats that conducted research in "3D-printed polymers for in-space manufacturing, weather data collection, bit flip memory testing, radar calibration and the effects of space radiation on electronic components". [13]
2017-073B | Buccaneer-RMM | Buccaneer-RMM | S43014
2017-073C | MiRaTA | MiRaTA | S43015
2017-073D | MakerSat-0 | MakerSat-0 | S43016
2017-073E | RadFxSat | Fox-1B | S43017
2017-073F | EagleSat | EagleSat | S43018
NOAA-20 sensors/instruments are: [1]
The Visible Infrared Imaging Radiometer Suite (VIIRS) takes global visible and infrared observations of land, ocean, and atmosphere parameters at high temporal resolution. Developed from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flown on the Aqua and Terra Earth Observing System (EOS) satellites, it has significantly better performance than the Advanced very-high-resolution radiometer (AVHRR) previously flown on NOAA satellites. [14]
The Cross-track Infrared Sounder (CrIS) produces high-resolution, three-dimensional temperature, pressure, and moisture profiles. These profiles are used to enhance weather forecasting models, and facilitate both short- and long-term weather forecasting. Over longer timescales, they help improve understanding of climate phenomena such as El Niño and La Niña. This is a brand-new instrument with breakthrough performance. [15] CrIS represents a significant enhancement over NOAA's legacy infrared sounder — High Resolution Infrared Radiation Sounders (HIRS) and is meant to be a counterpart to the Infrared Atmospheric Sounding Interferometer (IASI).
The Advanced Technology Microwave Sounder (ATMS) is a cross-track scanner with 22 channels, provides sounding observations needed to retrieve atmospheric temperature and moisture profiles for civilian operational weather forecasting as well as continuity of these measurements for climate monitoring purposes. It is a lighter-weight version of the previous Advanced Microwave Sounding Unit (AMSU) and Microwave Humidity Sounder (MHS) instruments flown on previous NOAA and NASA satellites with no new performance capabilities. [16]
The Ozone Mapping and Profiler Suite (OMPS) is an advanced suite of three hyperspectral instruments, extends the 25-plus year total-ozone and ozone-profile records. These records are used by ozone-assessment researchers and policy makers to track the health of the ozone layer. The improved vertical resolution of OMPS data products allows for better testing and monitoring of the complex chemistry involved in ozone destruction near the troposphere. OMPS products, when combined with cloud predictions, also help produce better ultraviolet index forecasts. [17] OMPS carries on a long tradition of space borne measurements of ozone beginning in 1970 with the Nimbus 4 satellite and continuing with the Solar Backscatter Ultraviolet (SBUV and SBUV/2), Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI) instruments on various NASA, NOAA, and international satellites. Over the more than 30-year period in which these instruments have been operating, they have provided a very detailed and important long-term record of the global distribution of ozone.
The Clouds and the Earth's Radiant Energy System (CERES), senses both solar-reflected and Earth-emitted radiation from the top of the atmosphere to the surface of Earth. Cloud properties are determined using simultaneous measurements by other JPSS instruments such as the VIIRS and will lead to a better understanding of the role of clouds and the energy cycle in global climate change. [18]
Between 29 November 2017, when ATMS produced its "first light" image, and 5 January 2018, when Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) produced theirs, the satellite went through activation, outgassing and decontamination on the path to operation. [19]
On 30 May 2018, after six months of on-orbit checkout, NOAA declared the spacecraft fully operational. [20]
The Earth Observing System (EOS) is a program of NASA comprising a series of artificial satellite missions and scientific instruments in Earth orbit designed for long-term global observations of the land surface, biosphere, atmosphere, and oceans. Since the early 1970s, NASA has been developing its Earth Observing System, launching a series of Landsat satellites in the decade. Some of the first included passive microwave imaging in 1972 through the Nimbus 5 satellite. Following the launch of various satellite missions, the conception of the program began in the late 1980s and expanded rapidly through the 1990s. Since the inception of the program, it has continued to develop, including; land, sea, radiation and atmosphere. Collected in a system known as EOSDIS, NASA uses this data in order to study the progression and changes in the biosphere of Earth. The main focus of this data collection surrounds climatic science. The program is the centrepiece of NASA's Earth Science Enterprise.
Deep Space Climate Observatory is a National Oceanic and Atmospheric Administration (NOAA) space weather, space climate, and Earth observation satellite. It was launched by SpaceX on a Falcon 9 v1.1 launch vehicle on 11 February 2015, from Cape Canaveral. This is NOAA's first operational deep space satellite and became its primary system of warning Earth in the event of solar magnetic storms.
The advanced microwave sounding unit (AMSU) is a multi-channel microwave radiometer installed on meteorological satellites. The instrument examines several bands of microwave radiation from the atmosphere to perform atmospheric sounding of temperature and moisture levels.
The Advanced Very-High-Resolution Radiometer (AVHRR) instrument is a space-borne sensor that measures the reflectance of the Earth in five spectral bands that are relatively wide by today's standards. AVHRR instruments are or have been carried by the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES) and European MetOp satellites. The instrument scans several channels; two are centered on the red (0.6 micrometres) and near-infrared (0.9 micrometres) regions, a third one is located around 3.5 micrometres, and another two the thermal radiation emitted by the planet, around 11 and 12 micrometres.
NOAA-19, known as NOAA-N' before launch, is the last of the American National Oceanic and Atmospheric Administration (NOAA) series of weather satellites. NOAA-19 was launched on 6 February 2009. NOAA-19 is in an afternoon Sun-synchronous orbit and is intended to replace NOAA-18 as the prime afternoon spacecraft.
NOAA-17, also known as NOAA-M before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-17 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-L series and a new launch vehicle.
NOAA-16, also known as NOAA-L before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-16 continued the series of Advanced TIROS-N (ATN) spacecraft that began with the launch of NOAA-8 (NOAA-E) in 1983; but it had additional new and improved instrumentation over the NOAA A-K series and a new launch vehicle. It was launched on 21 September 2000 and, following an unknown anomaly, it was decommissioned on 9 June 2014. In November of 2015 it broke up in orbit, creating more than 200 pieces of debris.
The atmospheric infrared sounder (AIRS) is one of six instruments flying on board NASA's Aqua satellite, launched on May 4, 2002. The instrument is designed to support climate research and improve weather forecasting.
The Polar-orbiting Operational Environmental Satellite (POES) is a constellation of polar orbiting weather satellites funded by the National Oceanic and Atmospheric Administration (NOAA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) with the intent of improving the accuracy and detail of weather analysis and forecasting. The spacecraft were provided by NASA and the European Space Agency (ESA), and NASA's Goddard Space Flight Center oversaw the manufacture, integration and test of the NASA-provided TIROS satellites. The first polar-orbiting weather satellite launched as part of the POES constellation was the Television Infrared Observation Satellite-N (TIROS-N), which was launched on 13 October 1978. The final spacecraft, NOAA-19, was launched on 6 February 2009. The ESA-provided MetOp satellite operated by EUMETSAT utilize POES-heritage instruments for the purpose of data continuity. The Joint Polar Satellite System, which was launched on 18 November 2017, is the successor to the POES Program.
NOAA-7, known as NOAA-C before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment. An earlier launch, NOAA-B, was scheduled to become NOAA-7, however NOAA-B failed to reach its required orbit.
NOAA-6, known as NOAA-A before launch, was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978–1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.
NOAA B was an American operational weather satellite for use in the National Operational Environmental Satellite System (NOESS) and for the support of the Global Atmospheric Research Program (GARP) during 1978-1984. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.
The Joint Polar Satellite System (JPSS) is the latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites. JPSS will provide the global environmental data used in numerical weather prediction models for forecasts, and scientific data used for climate monitoring. JPSS will aid in fulfilling the mission of the U.S. National Oceanic and Atmospheric Administration (NOAA), an agency of the Department of Commerce. Data and imagery obtained from the JPSS will increase timeliness and accuracy of public warnings and forecasts of climate and weather events, thus reducing the potential loss of human life and property and advancing the national economy. The JPSS is developed by the National Aeronautics and Space Administration (NASA) for the National Oceanic and Atmospheric Administration (NOAA), who is responsible for operation of JPSS. Three to five satellites are planned for the JPSS constellation of satellites. JPSS satellites will be flown, and the scientific data from JPSS will be processed, by the JPSS – Common Ground System (JPSS-CGS).
The Suomi National Polar-orbiting Partnership, previously known as the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) and NPP-Bridge, is a weather satellite operated by the United States National Oceanic and Atmospheric Administration (NOAA). It was launched in 2011 and is currently in operation.
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a sensor designed and manufactured by the Raytheon Company on board the polar-orbiting Suomi National Polar-orbiting Partnership, NOAA-20, and NOAA-21 weather satellites. VIIRS is one of five key instruments onboard Suomi NPP, launched on October 28, 2011. VIIRS is a whiskbroom scanner radiometer that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the visible and infrared bands of the electromagnetic spectrum.
NOAA-21, designated JPSS-2 prior to launch, is the second of the United States National Oceanic and Atmospheric Administration (NOAA)'s latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-21 was launched on 10 November 2022 and joined NOAA-20 and Suomi NPP in the same orbit. Circling the Earth from pole-to-pole, it will cross the equator about 14 times daily, providing full global coverage twice a day. It was launched with LOFTID.
NOAA-10, known as NOAA-G before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Environmental Satellite Data and Information Service (NESDIS). It was the third of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.
NOAA-11, known as NOAA-H before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA) for use in the National Operational Environmental Satellite System (NOESS) and for support of the Global Atmospheric Research Program (GARP) during 1978–1984. It was the fourth of the Advanced TIROS-N series of satellites. The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.
NOAA-12, also known as NOAA-D before launch, was an American weather satellite operated by National Oceanic and Atmospheric Administration (NOAA), an operational meteorological satellite for use in the National Environmental Satellite, Data, and Information Service (NESDIS). The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.
The Advanced Technology Microwave Sounder (ATMS) is a 22-channel scanning microwave radiometer for observation of the Earth's atmosphere and surface. It is the successor to the Advanced Microwave Sounding Unit (AMSU) on NOAA weather satellites. ATMS units have been flown on the Suomi NPP and on the Joint Polar Satellite System.