Discovery [1] [2] | |
---|---|
Discovered by | New Horizons KBO Search |
Discovery site | Las Campanas Obs. |
Discovery date | 4 May 2011 |
Designations | |
2011 JY31 | |
VNH0008 [3] [4] | |
TNO [5] · cubewano [6] distant [1] · binary [7] | |
Orbital characteristics [5] | |
Epoch 1 July 2021 (JD 2459396.5) | |
Uncertainty parameter 4 | |
Observation arc | 7.4 yr [4] |
Earliest precovery date | 28 April 2011 |
Aphelion | 47.183 AU |
Perihelion | 41.518 AU |
44.350 AU | |
Eccentricity | 0.06387 |
295.36 yr (107,881 d) | |
318.400° | |
0° 0m 12.013s / day | |
Inclination | 2.602° |
231.356° | |
105.231° | |
Physical characteristics | |
54–68 km (component) [8] | |
Mass | ~1.7×1017 kg [8] |
Mean density | 0.5–1.0 g/cm3 [8] |
46.62±0.06 h [7] [8] | |
61.40°±1.35° (wrt orbit) [7] 61.34°±1.34° (wrt ICRF pole) [7] | |
0.147 (geometric) [9] 0.036 (Bond) [9] | |
V–I=1.25±0.19 [10] | |
24.7 [10] | |
8.1±0.2 [4] 8.8 [5] [1] | |
2011 JY31 is a binary trans-Neptunian object from the Kuiper belt, located in the outermost region of the Solar System. It is a cold classical Kuiper belt object. 2011 JY31 was discovered on 4 May 2011, by a team of astronomers using one of the Magellan Telescopes in Chile during the New Horizons KBO Search for a potential flyby target for the New Horizons spacecraft. [2] Distant observations by New Horizons from September 2018 revealed its binary nature, showing two 68 km (42 mi)-wide components in a tight, mutual orbit 200 km (120 mi) apart. [8]
This minor planet has not been numbered by the Minor Planet Center and remains unnamed. [1]
High resolution observation by the New Horizons spacecraft made it possible to estimate the parameters of the binary orbit and the system mass. Assuming that the orbit is circular the period is 46.62±0.06 h, semimajor axis is 198.6±2.9 km and the system mass is about 1.7×1017 kg. The components are approximately equal in size and are approximately 68 km in size assuming density of 0.5 kg/cm3. [8]
The discovery adds support to streaming instability as the dominant mechanism in the formation of tight and contact binary planetesimals such as 486958 Arrokoth, which appear to be prevalent in the cold classical Kuiper belt population. [11] [12] [7]
The Kuiper belt is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times as wide and 20–200 times as massive. Like the asteroid belt, it consists mainly of small bodies or remnants from when the Solar System formed. While many asteroids are composed primarily of rock and metal, most Kuiper belt objects are composed largely of frozen volatiles, such as methane, ammonia, and water. The Kuiper belt is home to most of the objects that astronomers generally accept as dwarf planets: Orcus, Pluto, Haumea, Quaoar, and Makemake. Some of the Solar System's moons, such as Neptune's Triton and Saturn's Phoebe, may have originated in the region.
28978 Ixion (, provisional designation 2001 KX76) is a large trans-Neptunian object and a possible dwarf planet. It is located in the Kuiper belt, a region of icy objects orbiting beyond Neptune in the outer Solar System. Ixion is classified as a plutino, a dynamical class of objects in a 2:3 orbital resonance with Neptune. It was discovered in May 2001 by astronomers of the Deep Ecliptic Survey at the Cerro Tololo Inter-American Observatory, and was announced in July 2001. The object is named after the Greek mythological figure Ixion, who was a king of the Lapiths.
Makemake is a dwarf planet and the largest of what is known as the classical population of Kuiper belt objects, with a diameter approximately that of Saturn's moon Iapetus, or 60% that of Pluto. It has one known satellite. Its extremely low average temperature, about 40 K (−230 °C), means its surface is covered with methane, ethane, and possibly nitrogen ices. Makemake shows signs of geothermal activity and thus may be capable of supporting active geology and harboring an active subsurface ocean.
47171 Lempo, or as a binary (47171) Lempo–Hiisi (provisional designation 1999 TC36), is a trans-Neptunian object and trinary system from the Kuiper belt, located in the outermost regions of the Solar System. It was discovered on 1 October 1999, by American astronomers Eric Rubenstein and Louis-Gregory Strolger during an observing run at Kitt Peak National Observatory in Arizona, United States. Rubenstein was searching images taken by Strolger as part of their Nearby Galaxies Supernova Search project. It is classified as a plutino with a 2:3 mean-motion resonance with Neptune and is among the brighter TNOs. It reached perihelion in July 2015. This minor planet was named after Lempo from Finnish mythology.
(55637) 2002 UX25 (provisional designation 2002 UX25) is a trans-Neptunian object that orbits the Sun in the Kuiper belt beyond Neptune. It briefly garnered scientific attention when it was found to have an unexpectedly low density of about 0.82 g/cm3. It was discovered on 30 October 2002, by the Spacewatch program; as of August 2024, the object has yet to be named.
10370 Hylonome (; prov. designation: 1995 DW2) is a minor planet orbiting in the outer Solar System. The dark and icy body belongs to the class of centaurs and measures approximately 72 kilometers (45 miles) in diameter. It was discovered on 27 February 1995, by English astronomer David C. Jewitt and Vietnamese American astronomer Jane Luu at the U.S. Mauna Kea Observatory in Hawaii, and later named after the mythological creature Hylonome.
Eris is the most massive and second-largest known dwarf planet in the Solar System. It is a trans-Neptunian object (TNO) in the scattered disk and has a high-eccentricity orbit. Eris was discovered in January 2005 by a Palomar Observatory–based team led by Mike Brown and verified later that year. It was named in September 2006 after the Greco–Roman goddess of strife and discord. Eris is the ninth-most massive known object orbiting the Sun and the sixteenth-most massive overall in the Solar System. It is also the largest known object in the solar system that has not been visited by a spacecraft. Eris has been measured at 2,326 ± 12 kilometres (1,445 ± 7 mi) in diameter; its mass is 0.28% that of the Earth and 27% greater than that of Pluto, although Pluto is slightly larger by volume. Both Eris and Pluto have a surface area that is comparable to the area of Russia or South America.
(307261) 2002 MS4 (provisional designation 2002 MS4) is a large trans-Neptunian object in the Kuiper belt, which is a region of icy planetesimals beyond Neptune. It was discovered on 18 June 2002 by Chad Trujillo and Michael Brown during their search for bright, Pluto-sized Kuiper belt objects at Palomar Observatory. To within measurement uncertainties, 2002 MS4, 2002 AW197, and 2013 FY27 have a diameter close to 800 km (500 mi), which makes them the largest unnamed objects in the Solar System. 2002 MS4 is large enough that astronomers consider it a possible dwarf planet.
A contact binary is a small Solar System body, such as a minor planet or comet, that is composed of two bodies that have gravitated toward each other until they touch, resulting in a bilobated, peanut-like overall shape. Contact binaries are distinct from true binary systems such as binary asteroids where both components are separated. The term is also used for stellar contact binaries.
174567 Varda (provisional designation 2003 MW12) is a binary trans-Neptunian planetoid of the resonant hot classical population of the Kuiper belt, located in the outermost region of the Solar System. Its moon, Ilmarë, was discovered in 2009.
(84922) 2003 VS2 is a trans-Neptunian object discovered by the Near Earth Asteroid Tracking program on 14 November 2003. Like Pluto, it is in a 2:3 orbital resonance with Neptune and is thus a plutino. Analysis of light-curve suggests that it is not a dwarf planet.
66652 Borasisi, or as a binary (66652) Borasisi-Pabu, is a binary classical Kuiper belt object. It was discovered in September 1999 by Chad Trujillo, Jane X. Luu and David C. Jewitt and identified as a binary in 2003 by K. Noll and colleagues using the Hubble Space Telescope.
486958 Arrokoth (provisional designation 2014 MU69; formerly nicknamed Ultima Thule) is a trans-Neptunian object located in the Kuiper belt. Arrokoth became the farthest and most primitive object in the Solar System visited by a spacecraft when the NASA space probe New Horizons conducted a flyby on 1 January 2019. Arrokoth is a contact binary 36 km (22 mi) long, composed of two planetesimals 21 and 15 km (13 and 9 mi) across, that are joined along their major axes. With an orbital period of about 298 years and a low orbital inclination and eccentricity, Arrokoth is classified as a cold classical Kuiper belt object.
2014 PN70 (internally designated g12000JZ, g1 and PT3) is a trans-Neptunian object from the cold classical Kuiper belt located in the outermost region of the Solar System. It measures approximately 40 kilometers (25 miles) in diameter. The object was first observed by the New Horizons Search Team using the Hubble Space Telescope on 6 August 2014, and was a proposed flyby target for the New Horizons probe until 2015, when the alternative target 486958 Arrokoth was selected.
2014 OS393, unofficially designated e31007AI, e3 and PT2, is a binary trans-Neptunian object in the classical Kuiper belt, the outermost region of the Solar System. It was first observed by the New Horizons KBO Search using the Hubble Space Telescope on 30 July 2014. Until 2015, when the object 486958 Arrokoth was selected, it was a potential flyby target for the New Horizons probe. Estimated to be approximately 42 kilometres (26 mi) in diameter, the object had a poorly determined orbit as it had been observed for only a few months. With MPEC 2024-E99 the Minor Planet Center published on 6 March 2024 additional observations by New Horizons KBO Search-Subaru which allowed to compute a fairly reliable orbit.
2014 MT69 (internally designated 0720090F in the context of the Hubble Space Telescope, and 7 in the context of the New Horizons mission) is a cold classical Kuiper belt object (KBO) and was formerly a potential flyby target for the New Horizons probe. The object measures approximately 20–90 kilometers (12–56 miles) in diameter.
(523794) 2015 RR245, provisional designation 2015 RR245, is a large trans-Neptunian object of the Kuiper belt in the outermost regions of the Solar System. It was discovered on 9 September 2015, by the Outer Solar System Origins Survey at Mauna Kea Observatories on the Big island of Hawaii, in the United States. The object is in a rare 2:9 resonance with Neptune and measures approximately 600 kilometers in diameter. 2015 RR245 was suspected to have a satellite according to a study announced by Noyelles et al. in a European Planetary Science Congress meeting in 2019.
(556416) 2014 OE394 (provisional designation 2014 OE394) is a large cubewano in the Kuiper belt that was discovered in July 2014 by the Pan-STARRS-1 telescope, and announced on 17 July 2016. It is one of the brighter trans-Neptunian objects, being the 34th brightest cubewano as of 23 July 2016. Its exact size is unknown, but is most likely between 240 and 730 kilometers across. Mike Brown's website lists it as a "possible" dwarf planet, with an estimated diameter of 337 kilometers.
(516977) 2012 HZ84 (provisional designation 2012 HZ84) is a small trans-Neptunian object from the Kuiper belt located in the outermost region of the Solar System, approximately 74 kilometers (46 miles) in diameter. It was discovered on 17 April 2012, by a team of astronomers using one of the Magellan Telescopes in Chile during the New Horizons KBO Search in order to find a potential flyby target for the New Horizons spacecraft. In December 2017, this classical Kuiper belt object was imaged by the spacecraft from afar at a record distance from Earth.
2012 HE85 is a small, resonant trans-Neptunian object from the Kuiper belt, located in the outermost region of the Solar System, approximately 74 kilometers (46 miles) in diameter. It was first observed by a team of astronomers using one of the Magellan Telescopes in Chile during the New Horizons KBO Search on 18 April 2012, in order to find a potential flyby target for the New Horizons spacecraft. The likely 5:9 resonant object was imaged by the spacecraft from afar at a record distance from Earth in 2017.