Flyby anomaly

Last updated
Unsolved problem in physics:
What causes the unexpected change in acceleration for flybys of spacecraft?

The flyby anomaly is a discrepancy between current scientific models and the actual increase in speed (i.e. increase in kinetic energy ) observed during a planetary flyby (usually of Earth) by a spacecraft. In multiple cases, spacecraft have been observed to gain greater speed than scientists had predicted, but thus far no convincing explanation has been found. This anomaly has been observed as shifts in the S-band and X-band Doppler and ranging telemetry. The largest discrepancy noticed during a flyby is tiny, 13.46 mm/s. [1]

Contents

Observations

Gravitational assists are valuable techniques for Solar System exploration. Because the success of such flyby maneuvers depends on the exact geometry of the trajectory, the position and velocity of a spacecraft during its encounter with a planet is continually tracked with great precision by earth telemetry, e.g. via the Deep Space Network (DSN).

Range residuals during the Earth flyby of NEAR AntreasianGuinn199803b.jpg
Range residuals during the Earth flyby of NEAR
During its flyby, MESSENGER did not observe any anomalies

The flyby anomaly was first noticed during a careful inspection of DSN Doppler data shortly after the Earth flyby of the Galileo spacecraft on 8 December 1990. While the Doppler residuals (observed minus computed data) were expected to remain flat, the analysis revealed an unexpected 66  mHz shift, which corresponds to a velocity increase of 3.92 mm/s at perigee. Investigations of this effect at the Jet Propulsion Laboratory (JPL), the Goddard Space Flight Center (GSFC) and the University of Texas have not yielded a satisfactory explanation.

No such anomaly was detected after the second Earth flyby of Galileo in December 1992, where the measured velocity decrease matched that expected from atmospheric drag at the lower altitude of 303 km. However, the drag estimates had large error bars, and so an anomalous acceleration could not be ruled out. [2]

On 23 January 1998 the Near Earth Asteroid Rendezvous (NEAR) spacecraft experienced an anomalous velocity increase of 13.46 mm/s after its Earth encounter. Cassini–Huygens gained around 0.11 mm/s in August 1999, and Rosetta gained 1.82 mm/s after its Earth flyby in March 2005.

An analysis of the MESSENGER spacecraft (studying Mercury) did not reveal any significant unexpected velocity increase. This may be because MESSENGER both approached and departed Earth symmetrically about the equator (see data and proposed equation below). This suggests that the anomaly may be related to Earth's rotation.

In November 2009, ESA's Rosetta spacecraft was tracked closely during flyby in order to precisely measure its velocity, in an effort to gather further data about the anomaly, but no significant anomaly was found. [3] [4]

The 2013 flyby of Juno on the way to Jupiter yielded no anomalous acceleration. [5]

In 2018, a careful analysis of the trajectory of the presumed interstellar asteroid ʻOumuamua revealed a small excess velocity as it receded from the Sun. Initial speculation suggested that the anomaly was due to outgassing, though none had been detected. [6]

Summary of some Earth-flyby spacecraft is provided in table below. [3] [7]

Craft
Data
Galileo I Galileo II NEAR Cassini Rosetta-I MESSENGER Rosetta -II Rosetta -III Juno Hayabusa2 OSIRIS-REx [8] BepiColombo [9]
Date1990-12-081992-12-081998-01-231999-08-182005-03-042005-08-022007-11-132009-11-132013-10-092015-12-032017-09-222020-04-10
Speed at infinity, km/s8.9498.8776.85116.013.8634.0564.7
Speed at perigee, km/s13.7388.87712.73919.0310.51710.38912.4913.3414.9310.38.5
Impact parameter, km1126112850897322680.492231919064
Minimal altitude, km95630353211721954233653222483561 [10] 3090 [11] 1723712677
Spacecraft mass, kg2497.12223.0730.404612.12895.21085.628952895~27205904000
Trajectory inclination to equator, degrees142.9138.9108.025.4144.9133.1
Deflection angle, degrees47.4651.166.9219.6699.39694.780
Speed increment at infinity, mm/s3.92±0.08−4.60±1.0013.46±0.13−2±11.82±0.050.02±0.01~0~00±0.8 [5]  ? ? ?
Speed increment at perigee, mm/s2.560±0.050−9.200±0.6007.210±0.0700−1.700±0.90000.670±0.02000.008±0.004~0.000±0.000−0.004±0.044 ? ? ?
Gained energy, J/kg35.1±0.792.2±0.97.03±0.19 ? ? ?

Anderson's empirical relation

An empirical equation for the anomalous flyby velocity change was proposed in 2008 by J. D. Anderson et al.: [12]

where ωE is the angular frequency of the Earth, RE is the Earth radius, and φi and φo are the inbound and outbound equatorial angles of the spacecraft. This formula was derived later by Jean Paul Mbelek from special relativity, leading to one of the possible explanations of the effect. [13] This does not, however, consider the SSN residuals – see "Possible explanations" below.

Possible explanations

There have been a number of proposed explanations of the flyby anomaly, including:

Some missions designed to study gravity, such as MICROSCOPE and STEP, are designed to make extremely accurate gravity measurements and may shed some light on the anomaly. [21] However, MICROSCOPE has completed its mission, finding nothing anomalous, [22] and STEP is yet to fly.

See also

Related Research Articles

<i>Pioneer 11</i> First spacecraft to visit Saturn (1973–1995)

Pioneer 11 is a NASA robotic space probe launched on April 5, 1973, to study the asteroid belt, the environment around Jupiter and Saturn, the solar wind, and cosmic rays. It was the first probe to encounter Saturn, the second to fly through the asteroid belt, and the second to fly by Jupiter. Later, Pioneer 11 became the second of five artificial objects to achieve an escape velocity allowing it to leave the Solar System. Due to power constraints and the vast distance to the probe, the last routine contact with the spacecraft was on September 30, 1995, and the last good engineering data was received on November 24, 1995.

<i>NEAR Shoemaker</i> American space probe to asteroid (1996–2001)

Near Earth Asteroid Rendezvous – Shoemaker, renamed after its 1996 launch in honor of planetary scientist Eugene Shoemaker, was a robotic space probe designed by the Johns Hopkins University Applied Physics Laboratory for NASA to study the near-Earth asteroid Eros from close orbit over a period of a year. It was the first spacecraft to orbit an asteroid and land on it successfully. In February 2000, the mission closed in on the asteroid and orbited it. On February 12, 2001, Shoemaker touched down on the asteroid and was terminated just over two weeks later.

<span class="mw-page-title-main">Gravity</span> Attraction of masses and energy

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction primarily observed as mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

<span class="mw-page-title-main">Gravity assist</span> Space navigation technique

A gravity assist, gravity assist maneuver, swing-by, or generally a gravitational slingshot in orbital mechanics, is a type of spaceflight flyby which makes use of the relative movement and gravity of a planet or other astronomical object to alter the path and speed of a spacecraft, typically to save propellant and reduce expense.

<i>Rosetta</i> (spacecraft) European mission to study Comet 67P/Churyumov-Gerasimenko (2004–2016)

Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P). During its journey to the comet, the spacecraft performed flybys of Earth, Mars, and the asteroids 21 Lutetia and 2867 Šteins. It was launched as the third cornerstone mission of the ESA's Horizon 2000 programme, after SOHO / Cluster and XMM-Newton.

<span class="mw-page-title-main">Radial velocity</span> Velocity of an object as the rate of distance change between the object and a point

The radial velocity or line-of-sight velocity of a target with respect to an observer is the rate of change of the vector displacement between the two points. It is formulated as the vector projection of the target-observer relative velocity onto the relative direction or line-of-sight (LOS) connecting the two points.

<i>New Horizons</i> NASA spacecraft launched in 2006

New Horizons is an interplanetary space probe launched as a part of NASA's New Frontiers program. Engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern, the spacecraft was launched in 2006 with the primary mission to perform a flyby study of the Pluto system in 2015, and a secondary mission to fly by and study one or more other Kuiper belt objects (KBOs) in the decade to follow, which became a mission to 486958 Arrokoth. It is the fifth space probe to achieve the escape velocity needed to leave the Solar System.

<i>MESSENGER</i> NASA mission to Mercury

MESSENGER was a NASA robotic space probe that orbited the planet Mercury between 2011 and 2015, studying Mercury's chemical composition, geology, and magnetic field. The name is a backronym for Mercury Surface, Space Environment, Geochemistry, and Ranging, and a reference to the messenger god Mercury from Roman mythology.

<span class="mw-page-title-main">Mass concentration (astronomy)</span> Region of a planet or moons crust that contains a large positive gravitational anomaly

In astronomy, astrophysics and geophysics, a mass concentration is a region of a planet's or moon's crust that contains a large positive gravity anomaly. In general, the word "mascon" can be used as a noun to refer to an excess distribution of mass on or beneath the surface of an astronomical body, such as is found around Hawaii on Earth. However, this term is most often used to describe a geologic structure that has a positive gravitational anomaly associated with a feature that might otherwise have been expected to have a negative anomaly, such as the "mascon basins" on the Moon.

The Pioneer anomaly, or Pioneer effect, was the observed deviation from predicted accelerations of the Pioneer 10 and Pioneer 11 spacecraft after they passed about 20 astronomical units (3×109 km; 2×109 mi) on their trajectories out of the Solar System. The apparent anomaly was a matter of much interest for many years but has been subsequently explained by anisotropic radiation pressure caused by the spacecraft's heat loss.

<span class="mw-page-title-main">Redshift-space distortions</span>

Redshift-space distortions are an effect in observational cosmology where the spatial distribution of galaxies appears squashed and distorted when their positions are plotted as a function of their redshift rather than as a function of their distance. The effect is due to the peculiar velocities of the galaxies causing a Doppler shift in addition to the redshift caused by the cosmological expansion.

<span class="mw-page-title-main">Bow shock</span> Shock wave caused by blowing stellar wind

In astrophysics, bow shocks are shock waves in regions where the conditions of density and pressure change dramatically due to blowing stellar wind. Bow shock occurs when the magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma such as the solar wind. For Earth and other magnetized planets, it is the boundary at which the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause. For stars, this boundary is typically the edge of the astrosphere, where the stellar wind meets the interstellar medium.

Tests of general relativity serve to establish observational evidence for the theory of general relativity. The first three tests, proposed by Albert Einstein in 1915, concerned the "anomalous" precession of the perihelion of Mercury, the bending of light in gravitational fields, and the gravitational redshift. The precession of Mercury was already known; experiments showing light bending in accordance with the predictions of general relativity were performed in 1919, with increasingly precise measurements made in subsequent tests; and scientists claimed to have measured the gravitational redshift in 1925, although measurements sensitive enough to actually confirm the theory were not made until 1954. A more accurate program starting in 1959 tested general relativity in the weak gravitational field limit, severely limiting possible deviations from the theory.

<span class="mw-page-title-main">Planetary flyby</span> Sending a space probe past a planet or dwarf planet

A planetary flyby is the act of sending a space probe past a planet or a dwarf planet close enough to record scientific data. This is a subset of the overall concept of a flyby in spaceflight.

Modified Newtonian dynamics (MOND) is a theory that proposes a modification of Newton's second law to account for observed properties of galaxies. Its primary motivation is to explain galaxy rotation curves without invoking dark matter, and is one of the most well-known theories of this class. However, it has not gained widespread acceptance, with the majority of astrophysicists supporting the Lambda-CDM model as providing the better fit to observations.

Vyacheslav Gennadievich Turyshev is a Russian physicist now working in the US at the NASA Jet Propulsion Laboratory (JPL). He is known for his investigations of the Pioneer anomaly, affecting Pioneer 10 and Pioneer 11 spacecraft, and for his attempt to recover early data of the Pioneer spacecraft to shed light on such a phenomenon.

<span class="mw-page-title-main">486958 Arrokoth</span> Kuiper belt object

486958 Arrokoth (provisional designation 2014 MU69; formerly nicknamed Ultima Thule) is a trans-Neptunian object located in the Kuiper belt. Arrokoth became the farthest and most primitive object in the Solar System visited by a spacecraft when the NASA space probe New Horizons conducted a flyby on 1 January 2019. Arrokoth is a contact binary 36 km (22 mi) long, composed of two planetesimals 21 and 15 km (13 and 9 mi) across, that are joined along their major axes. With an orbital period of about 298 years and a low orbital inclination and eccentricity, Arrokoth is classified as a cold classical Kuiper belt object.

<span class="mw-page-title-main">Gravity of Mars</span> Gravitational force exerted by the planet Mars

The gravity of Mars is a natural phenomenon, due to the law of gravity, or gravitation, by which all things with mass around the planet Mars are brought towards it. It is weaker than Earth's gravity due to the planet's smaller mass. The average gravitational acceleration on Mars is 3.72076 m/s2 and it varies.

<span class="mw-page-title-main">Long Range Reconnaissance Imager</span> Telescope aboard the New Horizons spacecraft for imaging

Long Range Reconnaissance Imager (LORRI) is a telescope aboard the New Horizons spacecraft for imaging. LORRI has been used to image Jupiter, its moons, Pluto and its moons, and Arrokoth since its launch in 2006. LORRI is a reflecting telescope of Ritchey-Chrétien design, and it has a main mirror diameter of 208 mm across. LORRI has a narrow field of view, less than a third of a degree. Images are taken with a CCD capturing data with 1024 × 1024 pixels. LORRI is a telescopic panchromatic camera integrated with the New Horizons spacecraft, and it is one of seven major science instruments on the probe. LORRI does not have any moving parts and is pointed by moving the entire New Horizons spacecraft.

References

  1. "ESA's Rosetta spacecraft may help unravel cosmic mystery". European Space Agency. November 12, 2009. Retrieved 2024-08-11.
  2. Edwards, C.; Anderson, J; Beyer, P; Bhaskaran, S.; Borders, J.; DiNardo, S.; Folkner, W.; Haw, R.; Nandi, S.; Nicholson, F.; 0ttenhoff, C.; Stephens, S. (1993-08-16). Tracking Galileo at Earth-2 Perigee Using The Tracking and Data Relay Satellite System (PDF) (Report). CiteSeerX   10.1.1.38.4256 . hdl:2014/34792. Archived (PDF) from the original on 2022-04-18.{{cite report}}: CS1 maint: numeric names: authors list (link). The two [measurement] methods yielded similar fits to the data. Within an uncertainty of eight percent, both methods yielded a decrease in velocity along track of −5.9±0.2 mm/s. A priori predictions for the drag-induced velocity change, based on the Jacchia–Roberts model, were −6.2±4.0 mm/s [5], clearly consistent with the observed velocity change. By contrast, DSN data from the December 1990 Earth flyby, at altitude 956 km, indicated an unexplained increase in along-track velocity of 4 mm/s, after accounting for the much smaller drag effects. Given the uncertainty in drag models, we cannot conclusively rule out the possibility that a similar increase occurred at Earth 2. For example, an unmodeled increase of 4 mm/s and a drag decrease of −10 mm/s would be compatible with our results and our a priori atmospheric model. Significantly larger anomalous velocity increases, however, would appear inconsistent with the drag model.
  3. 1 2 "Mystery remains: Rosetta fails to observe swingby anomaly". ESA. Archived from the original on 2009-12-23.
  4. J. Biele (2012). "Navigation of the interplanetary Rosetta and Philae spacecraft and the determination of the gravitational field of comets and asteroids - (DLR) @ TU München, 2012" (PDF). Archived from the original (PDF) on 2014-11-29. Retrieved 2014-11-18.
  5. 1 2 3 Thompson, Paul F.; Matthew Abrahamson; Shadan Ardalan; John Bordi (2014). Reconstruction of Earth flyby by the Juno spacecraft. 24th AAS/AIAA Space Flight Mechanics Meeting. Santa Fe, NM: AAS. pp. 14–435.
  6. Is the Interstellar Asteroid Really a Comet?
  7. Anderson, John D.; James K. Campbell; Michael Martin Nieto (July 2007), "The energy transfer process in planetary flybys", New Astronomy, 12 (5): 383–397, arXiv: astro-ph/0608087 , Bibcode:2007NewA...12..383A, doi:10.1016/j.newast.2006.11.004, S2CID   15913052
  8. Stephen Clark (September 22, 2017). "OSIRIS-REx asteroid mission receives gravitational boost from planet Earth". Spaceflight Now.
  9. "BEPICOLOMBO EARTH FLYBY".
  10. NASA’S JUNO SPACECRAFT RETURNS 1ST FLYBY IMAGES OF EARTH WHILE SAILING ON TO JUPITER
  11. Hayabusa2 Earth Swing-by Result
  12. Anderson; et al. (7 March 2008). "Anomalous Orbital-Energy Changes Observed during Spacecraft Flybys of Earth" (PDF). Physical Review Letters. 100 (9): 091102. Bibcode:2008PhRvL.100i1102A. doi:10.1103/physrevlett.100.091102. PMID   18352689. Archived from the original (PDF) on 4 June 2016. Retrieved 15 February 2011.
  13. 1 2 Mbelek, J. P. (2009). "Special relativity may account for the spacecraft flyby anomalies". arXiv: 0809.1888 [qr-qc].
  14. Greaves, Eduardo D.; Bracho, Carlos; Mikoss, Imre (2020). "A Solution to the Flyby Anomaly Riddle". Progress in Physics. 16 (1): 49.
  15. Cespedes-Cure, Jorge (2002). Einstein on Trial or Metaphysical Principles of Natural Philosophy (1st ed.). Venezuela: et al. Organization. ISBN   0-9713873-0-3.
  16. Adler, S. L. (2009), "Can the flyby anomaly be attributed to Earth-bound dark matter?", Physical Review D, 79 (2): 023505, arXiv: 0805.2895 , Bibcode:2009PhRvD..79b3505A, doi:10.1103/PhysRevD.79.023505, S2CID   13152802
  17. Iorio, L. (2009). "The Effect of General Relativity on Hyperbolic Orbits and Its Application to the Flyby Anomaly". Scholarly Research Exchange. 2009: 7695. arXiv: 0811.3924 . Bibcode:2009ScReE2009.7695I. doi: 10.3814/2009/807695 .
  18. Antreasian, Peter G.; Guinn, Joseph R. (1998-08-10). Investigations into the Unexpected Delta-V Increase During the Earth Gravity Assist of GALILEO and NEAR (PDF). AIAA/AAS Astrodynamics Specialist Conference and Exhibition. Boston, Massachusetts: AIAA. CiteSeerX   10.1.1.613.5871 . hdl:2014/20322. AIAA 98-4287. Archived (PDF) from the original on 2022-01-19. Retrieved 2017-05-06.
  19. Guruprasad, V. (2015). "Observational evidence for travelling wave modes bearing distance proportional shifts". EPL . 110 (5): 54001. arXiv: 1507.08222 . Bibcode:2015EL....11054001G. doi:10.1209/0295-5075/110/54001. S2CID   42285652.
  20. Pinheiro, Mario J. (2016). "Some effects of topological torsion currents on spacecraft dynamics and the flyby anomaly". Monthly Notices of the Royal Astronomical Society . 461 (4): 3948–3953. arXiv: 1606.00691 . Bibcode:2016MNRAS.461.3948P. doi: 10.1093/mnras/stw1581 .
  21. Páramos, Jorge; Hechenblaikner, G. (2013). "Probing the Flyby Anomaly with the future STE-QUEST mission". Planetary and Space Science. 79–80: 76–81. arXiv: 1210.7333 . Bibcode:2013P&SS...79...76P. doi:10.1016/j.pss.2013.02.005. ISSN   0032-0633. S2CID   119287334.
  22. Touboul, P.; Métris, G.; Rodrigues, M.; Bergé, J.; Robert, A.; Baghi, Q.; et al. (2022). "MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle". Physical Review Letters. 129 (12): 121102. arXiv: 2209.15487 . Bibcode:2022PhRvL.129l1102T. doi:10.1103/PhysRevLett.129.121102. PMID   36179190. S2CID   252468544.

Literature