Discovery [1] | |
---|---|
Discovered by | University of New South Wales, Australia |
Discovery site | European Southern Observatory |
Discovery date | 17 December 2015 |
Radial velocity | |
Orbital characteristics [2] | |
0.0890+0.0029 −0.0031 AU | |
Eccentricity | 0.11+0.10 −0.07 |
17.8719±0.0059 d | |
Semi-amplitude | 1.92±0.19 m/s |
Star | Wolf 1061 |
Physical characteristics | |
1.66 R🜨 [3] | |
Mass | ≥3.41+0.43 −0.41 M🜨 [2] |
Temperature | 223 K (−50 °C; −58 °F) [4] |
Wolf 1061 c is an exoplanet orbiting within the habitable zone of the red dwarf star Wolf 1061 in the constellation Ophiuchus, about 14.1 light-years from Earth. At the time of discovery, it was the closest known potentially habitable exoplanet to Earth, though several closer ones have since been found. [5] [6] It is the second planet in order from its host star in a triple planetary system, and has an orbital period of 17.9 days. Wolf 1061 c is classified as a super-Earth exoplanet as its mass is between that of Earth and the ice giants.
Wolf 1061 c is thought to be a super-Earth exoplanet as its minimum mass is about 3.4 times that of Earth. Its radius is unknown, but predicted to be about 1.6 times that of Earth. [1] The planet has an equilibrium temperature of 223 K (−50 °C; −58 °F), slightly higher than that of Mars. [4]
In astronomical terms, the Wolf 1061 system is relatively close to Earth, at only 14.1 light years away. [5] [6]
The discovery was announced on 17 December 2015, following a study that used 10 years of archival spectra of the star Wolf 1061 using the HARPS spectrograph attached to the ESO 3.6 m Telescope at the European Southern Observatory at La Silla, Chile. [5] [1]
The planet orbits a M-type star named Wolf 1061, which is orbited by a total of three planets. The star has a mass of 0.25 M☉ and a radius of 0.26 R☉. It has a temperature of 3380 K. The age is poorly constrained/unknown, but estimates would place it around a few billion years. In comparison, the Sun is 4.6 billion years old [7] and has a surface temperature of 5778 K. [8]
The star's apparent magnitude, or how bright it appears from Earth's perspective, is 10.1m. Therefore, it is too dim to be seen with the naked eye.
Wolf 1061 c orbits its host star with less than 1% of the Sun's luminosity every 17.9 days at a distance of 0.08 astronomical units (AU) (compared to Mercury which orbits at a distance of 0.38 AU). [1]
The planet's orbital distance of 0.084 AU (assuming mild eccentricity) lies at the inner edge of its star's habitable zone, which extends from approximately 0.073 to 0.190 AU (for comparison, the habitable zone of the Sun is approximated at 0.5 to 3.0 AU for its different energy emission). Its host star is a red dwarf, with about a quarter as much mass as the Sun. As a result, stars like Wolf 1061 have the ability to burn up to 400–500 billion years, 40–50 times longer than the Sun will. [9]
Because it is so close to the star, it is likely to be tidally locked, meaning one side permanently faces the star and the other side permanently faces away. Although this scenario could result in extreme temperature differences on the planet, [10] the terminator line that separates the illuminated side and the dark side could potentially be habitable. Additionally, a much larger portion of the planet could also be habitable if it has a thick enough atmosphere to facilitate heat transfer away from the side facing the star. [6]
A 2017 study concluded that it is unlikely that the planets within the system, including Wolf 1061c, have any surface water, hypothesizing that it is a runaway greenhouse candidate as they lie within the Venus zone of Wolf 1061. [11]
GJ 1061 is a red dwarf star located 12 light-years from Earth in the southern constellation of Horologium. Even though it is a relatively nearby star, it has an apparent visual magnitude of about 13, so it can only be seen with at least a moderately-sized telescope.
Gliese 876 is a red dwarf star 15.2 light-years away from Earth in the constellation of Aquarius. It is one of the closest known stars to the Sun confirmed to possess a planetary system with more than two planets, after GJ 1061, YZ Ceti, Tau Ceti, and Wolf 1061; as of 2018, four extrasolar planets have been found to orbit the star. The planetary system is also notable for the orbital properties of its planets. It is the only known system of orbital companions to exhibit a near-triple conjunction in the rare phenomenon of Laplace resonance. It is also the first extrasolar system around a normal star with measured coplanarity. While planets b and c are located in the system's habitable zone, they are giant planets believed to be analogous to Jupiter.
Wolf 1061 is an M-class red dwarf star located about 14.1 light-years away in the constellation Ophiuchus. It is the 36th-closest-known star system to the Sun and has a relatively high proper motion of 1.2 seconds of arc per year. Wolf 1061 does not have any unusual spectroscopic features.
Gliese 876 b is an exoplanet orbiting the red dwarf Gliese 876. It completes one orbit in approximately 61 days. Discovered in June 1998, Gliese 876 b was the first planet to be discovered orbiting a red dwarf.
An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 24 July 2024, there are 7,026 confirmed exoplanets in 4,949 planetary systems, with 1007 systems having more than one planet. This is a list of the most notable discoveries.
Gliese 667 Cc is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius. The exoplanet was found by using the radial velocity method, from radial-velocity measurements via observation of Doppler shifts in the spectrum of the planet's parent star. Gliese 667 Cc is sometimes considered as the first confirmed exoplanet with a high prospect for habitability.
Kepler-69c is a confirmed super-Earth exoplanet, likely rocky, orbiting the Sun-like star Kepler-69, the outermore of two such planets discovered by NASA's Kepler spacecraft. It is located about 2,430 light-years from Earth.
Kepler-442b is a confirmed near-Earth-sized exoplanet, likely rocky, orbiting within the habitable zone of the K-type main-sequence star Kepler-442, about 1,196 light-years (367 pc) from Earth in the constellation of Lyra.
Wolf 1061d is an exoplanet orbiting the red dwarf star Wolf 1061 in the Ophiuchus constellation, about 13.8 light years from Earth. It is the third and furthest planet in order from its host star in a triple planetary system, and has an orbital period of about 217 days.
TRAPPIST-1e, also designated as 2MASS J23062928-0502285 e, is a rocky, close-to-Earth-sized exoplanet orbiting within the habitable zone around the ultracool dwarf star TRAPPIST-1, located 40.7 light-years away from Earth in the constellation of Aquarius. Astronomers used the transit method to find the exoplanet, a method that measures the dimming of a star when a planet crosses in front of it.
Ross 128 b is a confirmed Earth-sized exoplanet, likely rocky, that is orbiting near the inner edge of the habitable zone of the red dwarf star Ross 128, at a distance of 11.007 light-years from Earth in the constellation of Virgo. The exoplanet was found using a decade's worth of radial velocity data using the European Southern Observatory's HARPS spectrograph at the La Silla Observatory in Chile. Ross 128 b is the nearest exoplanet around a quiet red dwarf, and is considered one of the best candidates for habitability. The planet is only 35% more massive than Earth, receives only 38% more starlight, and is expected to be a temperature suitable for liquid water to exist on the surface, if it has an atmosphere.
Luyten b is a confirmed exoplanet, likely rocky, orbiting within the habitable zone of the nearby red dwarf Luyten's Star. It is the fourth-closest potentially habitable exoplanet known, at a distance of 12 light-years. Only Proxima Centauri b, Ross 128 b, and GJ 1061 d are closer. Discovered alongside Gliese 273c in June 2017, Luyten b is a super-Earth of around 2.89 times the mass of Earth and receives only 6% more starlight than Earth, making it one of the best candidates for habitability.
Teegarden's Star b is an exoplanet found orbiting within the habitable zone of Teegarden's Star, an M-type red dwarf 12.5 light years away from the Solar System. It had the highest Earth Similarity Index (ESI) of any exoplanet, but in February 2024 a new study updated the parameters of the planet, thus reducing its ESI to 0.90, making it no longer the planet with the hightest ESI. Along with Teegarden's Star c, it is among the closest known potentially habitable exoplanets.
Teegarden's Star c is an exoplanet found orbiting in the habitable zone of Teegarden's Star, an M-type red dwarf star 12.5 light years away from the Solar System. It orbits in the conservative habitable zone around its star. Along with Teegarden's Star b, it is among the closest known potentially habitable exoplanets. It was discovered in June 2019.
Wolf 1069 is a red dwarf star located 31.2 light-years away from the Solar System in the constellation of Cygnus. The star has 17% the mass and 18% the radius of the Sun, a temperature of 3,158 K, and a slow rotation period of 150–170 days. It hosts one known exoplanet called Wolf 1069 b which could possibly sustain life.
Wolf 1069 b is an Earth-sized planet orbiting the red dwarf star Wolf 1069. Being located in the habitable zone of its star, Wolf 1069 b is considered a potentially habitable planet, as well as the sixth-closest Earth-mass planet orbiting within its star's habitable zone. The minimum mass of the planet, as measured by the radial velocity method, is 1.26 ME, while its radius is estimated at 1.08 R🜨. The equilibrium temperature of Wolf 1069 b is -23 °C.
Gliese 414 Ac, or GJ 414 Ac, is an exoplanet orbiting Gliese 414 A, a K-type main-sequence star located 39 light-years from Earth, in the constellation Ursa Major. It is classified as a super-Neptune exoplanet, being at least 54 times more massive than the Earth and about 8.5 times larger. Gliese 414 Ac orbits its parent star at a distance of 1.4 astronomical units and completes one revolution around it every 2 years and 20 days. It is one of the two planets orbiting Gliese 414 A, the other is Gliese 414 Ab, a sub-Neptune.
GJ 3929 b is a confirmed exoplanet located 52 light-years away orbiting the red dwarf star GJ 3929. It is an Earth-sized planet, having a radius only 9% larger than that of Earth. It orbits its star at a distance of 0.0252 astronomical units (3,770,000 km), being located in the Venus zone of its star, and completes one orbit around it every 2 days and 15 hours. Because of the proximity of its star, and its low mass, GJ 3929 b is classified as a Venus-like planet, having an equilibrium temperature of around 300 °C and receiving planetary insolation 17 times more intense than Earth receives from the Sun.
GJ 3929, also known as Gliese 3929 and TOI-2013, is a red dwarf star located 51.6 light-years from Earth, in the constellation Corona Borealis. With an apparent magnitude of 12, it is not visible to the naked eye. In 2022, two exoplanets were detected orbiting the star.