Ranger 1

Last updated

Ranger 1
Ranger 1.jpg
Ranger 1 Satellite in preparation for use at the Parade of Progress Show at the Public Hall, Cleveland, Ohio, August 1964
Mission typeTechnology
Operator NASA
Harvard designation1961 Phi 1
COSPAR ID 1961-021A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 173
Mission duration7 days
Spacecraft properties
Manufacturer Jet Propulsion Laboratory
Launch mass306.2 kilograms (675 lb)
Power150.0 W
Start of mission
Launch dateAugust 23, 1961, 10:04:10 (1961-08-23UTC10:04:10Z) UTC
Rocket Atlas LV-3 Agena-B
Launch site Cape Canaveral LC-12
End of mission
Decay date30 August 1961 (1961-08-31)
Orbital parameters
Reference system Geocentric
Regime Low Earth
(High Earth planned)
Semi-major axis 6,690.3 kilometres (4,157.2 mi)
Eccentricity 0.019939
Perigee altitude 179 kilometres (111 mi)
Apogee altitude 446 kilometres (277 mi)
Inclination 32.9 degrees
Period 91.1 minutes
Revolution no.110
 None
Ranger 2  
 

Ranger 1 was a prototype spacecraft launched as part of the Ranger program of uncrewed space missions. Its primary mission was to test the performance of those functions and parts necessary for carrying out subsequent lunar and planetary missions; a secondary objective was to study the nature of particles and fields in the space environment. Due to a launch vehicle malfunction, the spacecraft could reach only Low Earth orbit, rather than the high Earth orbit that had been planned, and was only able to complete part of its mission. [1]

Contents

Spacecraft design

The spacecraft was of the Ranger Block I design and consisted of a hexagonal base 1.5 meters (4 ft 11 in) across upon which was mounted a cone-shaped 4-meter (13 ft) high tower of aluminum struts and braces. Two solar panel wings measuring 5.2 meters (17 ft) from tip to tip extended from the base. A high-gain directional dish antenna was attached to the bottom of the base. Spacecraft experiments and other equipment were mounted on the base and tower. Instruments aboard the spacecraft included a Lyman-alpha telescope, a rubidium-vapor magnetometer, electrostatic analyzers, medium-energy range particle detectors, two triple coincidence telescopes, a cosmic-ray integrating ionization chamber, cosmic dust detectors, and solar X-ray scintillation counters. There was no camera or midcourse correction engine on the Block I spacecraft. [1]

The communications system included the high-gain antenna and an omnidirectional medium-gain antenna and two transmitters, one at 960.1 MHz with 0.25  watts power output and the other at 960.05 MHz with 3 watts power output. Power was to be furnished by 8680 solar cells on the two panels, a 57-kilogram (126 lb) silver-zinc battery, and smaller batteries on some of the experiments. Attitude control was provided by a solid-state timing controller, Sun and Earth sensors, and pitch and roll jets. The temperature was controlled passively by gold plating, white paint, and polished aluminum surfaces. [1]

Mission

The Ranger 1 spacecraft was designed to go into an Earth parking orbit and then move into a 60,000-by-1,100,000-kilometre (37,000 by 684,000 mi) Earth orbit. The purpose of the mission was mainly as an engineering test to verify the functionality of the Ranger hardware. [1]

Launch delays

Launch

During the first half of 1961, Lockheed introduced the new Agena B stage which replaced the early test-model Agena A of 1959-60. Agena B was more powerful and had in-orbit restart capability. Its first flight with the launch of Midas 3 on July 24 was successful. Several frustrating delays in Ranger 1's launch occurred, including one episode where the spacecraft's timer inadvertently activated on the pad, causing the solar panels to be deployed inside the payload shroud. After removing Ranger 1 and repairing it, the launch was carried out at 6:04 AM EST on August 23. All went well up to orbital injection, but the planned Agena restart went awry when the engine shut down after only a few seconds, putting the probe in a 312x105 mile track. Subsequent investigation concluded that an electrical circuit in the Agena had overheated from exposure to the Sun. The unintended orbit made it difficult to operate Ranger 1's systems correctly, although ground controllers tried to work around it. The main problem they faced was with the solar panels; Ranger 1 would experience 90 minutes of darkness while passing around the nighttime side of the Earth. In addition, the antennas at NASA's various tracking stations had difficulty locking onto the probe due to its orbital plane. During this time, the computer system repeatedly fired the attitude control jets in a vain attempt to lock onto the Sun with the effect that only one day after launch, the probe ran out of attitude control gas. At this point, it could not be stabilized and the solar panels lost their lock on the Sun. Ranger 1 thus reverted to battery power and continued transmitting until the batteries ran down on August 27 and all signals from the probe ceased. It was not a total loss; the spacecraft systems had worked well and some data on cosmic rays and radiation was returned, however the low orbit precluded the use of the magnetometer. After four days and 111 orbits, Ranger 1 reentered and burned up over the Gulf of Mexico. [1]

Footnotes

See also

Related Research Articles

<span class="mw-page-title-main">Mariner program</span> NASA space program from 1962 to 1973

The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System - visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.

<span class="mw-page-title-main">Mariner 2</span> 1962 space probe to Venus

Mariner 2, an American space probe to Venus, was the first robotic space probe to conduct a successful planetary encounter. The first successful spacecraft in the NASA Mariner program, it was a simplified version of the Block I spacecraft of the Ranger program and an exact copy of Mariner 1. The missions of the Mariner 1 and 2 spacecraft are sometimes known as the Mariner R missions. Original plans called for the probes to be launched on the Atlas-Centaur, but serious developmental problems with that vehicle forced a switch to the much smaller Agena B second stage. As such, the design of the Mariner R vehicles was greatly simplified. Far less instrumentation was carried than on the Soviet Venera probes of this period—for example, forgoing a TV camera—as the Atlas-Agena B had only half as much lift capacity as the Soviet 8K78 booster. The Mariner 2 spacecraft was launched from Cape Canaveral on August 27, 1962, and passed as close as 34,773 kilometers (21,607 mi) to Venus on December 14, 1962.

<span class="mw-page-title-main">Mariner 1</span> 1962 NASA unmanned mission to fly by Venus

Mariner 1, built to conduct the first American planetary flyby of Venus, was the first spacecraft of NASA's interplanetary Mariner program. Developed by Jet Propulsion Laboratory, and originally planned to be a purpose-built probe launched summer 1962, Mariner 1's design was changed when the Centaur proved unavailable at that early date. Mariner 1, were then adapted from the lighter Ranger lunar spacecraft. Mariner 1 carried a suite of experiments to determine the temperature of Venus as well to measure magnetic fields and charged particles near the planet and in interplanetary space.

<span class="mw-page-title-main">Mariner 3</span> Failed robotic deep-spacecraft to Mars

Mariner 3 was one of two identical deep-space probes designed and built by the Jet Propulsion Laboratory (JPL) for NASA's Mariner-Mars 1964 project that were intended to conduct close-up (flyby) scientific observations of the planet Mars and transmit information on interplanetary space and the space surrounding Mars, televised images of the Martian surface and radio occultation data of spacecraft signals as affected by the Martian atmosphere back to Earth.

<span class="mw-page-title-main">Mariner 5</span> NASA space probe launched in 1967 to study Venus

Mariner 5 was a spacecraft of the Mariner program that carried a complement of experiments to probe Venus' atmosphere by radio occultation, measure the hydrogen Lyman-alpha spectrum, and sample the solar particles and magnetic field fluctuations above the planet. Its goals were to measure interplanetary and Venusian magnetic fields, charged particles, plasma, radio refractivity and UV emissions of the Venusian atmosphere.

<span class="mw-page-title-main">Mariner 8</span> Failed 1971 Mars robotic spacecraft

Mariner-H, also commonly known as Mariner 8, was part of the Mariner Mars '71 project. It was intended to go into Mars orbit and return images and data, but a launch vehicle failure prevented Mariner 8 from achieving Earth orbit and the spacecraft reentered into the Atlantic Ocean shortly after launch.

<span class="mw-page-title-main">Pioneer P-30</span> Nasa 1960s lunar orbiter probe

Pioneer P-30 was intended to be a lunar orbiter probe, but the mission failed shortly after launch on September 25, 1960. The objectives were to place a highly instrumented probe in lunar orbit, to investigate the environment between the Earth and Moon, and to develop technology for controlling and maneuvering spacecraft from Earth. It was equipped to estimate the Moon's mass and topography of the poles, record the distribution and velocity of micrometeorites, and study radiation, magnetic fields, and low frequency electromagnetic waves in space. A mid-course propulsion system and injection rocket would have been the first United States self-contained propulsion system capable of operation many months after launch at great distances from Earth and the first U.S. tests of maneuvering a satellite in space.

<span class="mw-page-title-main">Pioneer P-31</span>

Pioneer P-31 was intended to be a lunar orbiter probe, but the mission failed shortly after launch. The objectives were to place a highly instrumented probe in lunar orbit, to investigate the environment between the Earth and Moon, and to develop technology for controlling and maneuvering spacecraft from Earth. It was equipped to take images of the lunar surface with a television-like system, estimate the Moon's mass and topography of the poles, record the distribution and velocity of micrometeorites, and study radiation, magnetic fields, and low frequency electromagnetic waves in space. A midcourse propulsion system and injection rocket would have been the first United States self-contained propulsion system capable of operation many months after launch at great distances from Earth and the first U.S. tests of maneuvering a satellite in space.

<span class="mw-page-title-main">Ranger 2</span>

Ranger 2 was a flight test of the Ranger spacecraft system of the NASA Ranger program designed for future lunar and interplanetary missions. Ranger 2 was designed to test various systems for future exploration and to conduct scientific observations of cosmic rays, magnetic fields, radiation, dust particles, and a possible hydrogen gas "tail" trailing the Earth.

<span class="mw-page-title-main">Ranger 3</span> 1962 robotic lunar exploration mission by NASA; malfunctioned

Ranger 3 was a space exploration mission conducted by NASA to study the Moon. The Ranger 3 robotic spacecraft was launched January 26, 1962 as part of the Ranger program. Due to a series of malfunctions, the spacecraft missed the Moon by 22,000 mi (35,000 km) and entered a heliocentric orbit.

<span class="mw-page-title-main">Ranger 4</span> 1962 American unmanned space flight intended to study the Moon

Ranger 4 was a spacecraft of the Ranger program, launched in 1962. It was designed to transmit pictures of the lunar surface to Earth stations during a period of 10 minutes of flight prior to crashing upon the Moon, to rough-land a seismometer capsule on the Moon, to collect gamma-ray data in flight, to study radar reflectivity of the lunar surface, and to continue testing of the Ranger program for development of lunar and interplanetary spacecraft.

<span class="mw-page-title-main">Ranger 5</span> US unmanned lunar space probe

Ranger 5 was a spacecraft of the Ranger program designed to transmit pictures of the lunar surface to Earth stations during a period of 10 minutes of flight prior to impacting on the Moon, to rough-land a seismometer capsule on the Moon, to collect gamma-ray data in flight, to study radar reflectivity of the lunar surface, and to continue testing of the Ranger program for development of lunar and interplanetary spacecraft. Due to an unknown malfunction, the spacecraft ran out of power and ceased operation. It passed within 725 km of the Moon.

<i>Clementine</i> (spacecraft) American space project

Clementine was a joint space project between the Ballistic Missile Defense Organization and NASA, launched on January 25, 1994. Its objective was to test sensors and spacecraft components in long-term exposure to space and to make scientific observations of both the Moon and the near-Earth asteroid 1620 Geographos.

<i>Nozomi</i> (spacecraft) Failed Mars orbiter

Nozomi was a Mars orbiter that failed to reach Mars due to electrical failures. The mission was terminated on December 31, 2003.

<span class="mw-page-title-main">Ranger 7</span> United States lunar space probe

Ranger 7 was the first space probe of the United States to successfully transmit close images of the lunar surface back to Earth. It was also the first completely successful flight of the Ranger program. Launched on July 28, 1964, Ranger 7 was designed to achieve a lunar-impact trajectory and to transmit high-resolution photographs of the lunar surface during the final minutes of flight up to impact.

<span class="mw-page-title-main">Ranger 6</span> United States lunar space probe

Ranger 6 was a lunar probe in the NASA Ranger program, a series of robotic spacecraft of the early and mid-1960s to obtain the first close-up images of the Moon's surface. It was launched on January 30, 1964 and was designed to transmit high-resolution photographs of the lunar terrain during the final minutes of flight until impacting the surface. The spacecraft carried six television vidicon cameras - two wide-angle and four narrow-angle - to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-quality television pictures. No other experiments were carried on the spacecraft. Due to a failure of the camera system, no images were returned.

<span class="mw-page-title-main">Ranger 8</span> NASA spacecraft to explore the moon, 1965

Ranger 8 was a lunar probe in the Ranger program, a robotic spacecraft series launched by NASA in the early-to-mid-1960s to obtain the first close-up images of the Moon's surface. These pictures helped select landing sites for Apollo missions and were used for scientific study. During its 1965 mission, Ranger 8 transmitted 7,137 lunar surface photographs before it crashed into the Moon as planned. This was the second successful mission in the Ranger series, following Ranger 7. Ranger 8's design and purpose were very similar to those of Ranger 7. It had six television vidicon cameras: two full-scan and four partial-scan. Its sole purpose was to document the Moon's surface.

<span class="mw-page-title-main">Ranger 9</span> Lunar space probe launched in 1965 as part of NASAs Ranger program

Ranger 9 was a Lunar probe, launched in 1965 by NASA. It was designed to achieve a lunar impact trajectory and to transmit high-resolution photographs of the lunar surface during the final minutes of flight up to impact. The spacecraft carried six television vidicon cameras—two wide-angle and four narrow-angle —to accomplish these objectives. The cameras were arranged in two separate chains, or channels, each self-contained with separate power supplies, timers, and transmitters so as to afford the greatest reliability and probability of obtaining high-quality television pictures. These images were broadcast live on television to millions of viewers across the United States. No other experiments were carried on the spacecraft.

<span class="mw-page-title-main">THEMIS</span> NASA satellite of the Explorer program

Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission began in February 2007 as a constellation of five NASA satellites to study energy releases from Earth's magnetosphere known as substorms, magnetic phenomena that intensify auroras near Earth's poles. The name of the mission is an acronym alluding to the Titan Themis.

<span class="mw-page-title-main">Atlas-Agena</span> American expendable launch system

The Atlas-Agena was an American expendable launch system derived from the SM-65 Atlas missile. It was a member of the Atlas family of rockets, and was launched 109 times between 1960 and 1978. It was used to launch the first five Mariner uncrewed probes to the planets Venus and Mars, and the Ranger and Lunar Orbiter uncrewed probes to the Moon. The upper stage was also used as an uncrewed orbital target vehicle for the Gemini crewed spacecraft to practice rendezvous and docking. However, the launch vehicle family was originally developed for the Air Force and most of its launches were classified DoD payloads.

References